
Statistical Methods in Epidemiology

Chapter 9: Time-to-Event Data & Competing Risks

Winter Semester 2022/23
Version: January 24, 2023

Michael Schomaker
Ludwig-Maximilians-Universität München, Institut für Statistik



Methods in Epi
Michael Schomaker

Introduction

Estimands
without competing risks

with competing risks

Censoring Revisited

Identification

Estimation

Separable Effects

Hazard of Hazard
Ratios

Summary

Bibliography

Page 2 of 81

What is time-to-event data?

Data where the outcome consists of the tuple (T ,Y ):

Time T : duration from a predefined time zero until an event of interest occurs

Event Y : for example, death, clinical event, viral failure, recovery
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Censoring (I)

Almost always, for many subjects we do not observe the event/outcome due to

study end at a particular date

participants leave the study (drop out, loss to follow-up)

another, competing event D occurs

patients get transferred to other facilities

patients leave insurance schemes / database

Units for which any of the above applies get “censored” at the respective date and
Y = 0 at this date (we may define C = 1).
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Censoring (II)

weeks

X

X

0 1 2 3 4 5 6 7 8 9 10

study start study end

event occurred (Y=1, T=2, C=0)

event occurred (Y=1, T=6, C=0)

administrative censoring (Y=0, T=10, C=1)

loss to follow−up (Y=0, T=8, C=1)

competing event D occurred (Y=0, D=1, T=7, C=?)

loss to follow−up (Y=0, T=5, C=1)
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Example

We consider the data example from Young et al. [1]:

T = time to death due to prostate cancer

Y = death due to prostate cancer

D = death due to other causes

C = censoring due to end of follow-up

A = high dose estrogen therapy (A=1) versus placebo (A=0)

L = age, blood pressure, clinical stage etc.
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Example (II)

If we define follow-up time to be 60 weeks, then we also have to censor patients if
they are alive at 60 weeks (T = 60, C = 1, Y = 0, D = 0)
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Example (III)

We can also work with discrete time / time intervals:
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Multiple time points

Notation:

Lt = Covariates at time t

At = Intervention at time t

Yt = Outcome / Event at time t

Ct = Censoring indicator at time t

Dt = Indicator for other, competing event at time t
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Example (IV)

In our example, only Y , C, and D vary; but not A and L:

age stage norm_a hx hemoglobin SBP DBP metastases A C.4 D.4 Y.4
87 3 0 1 13.398438 17 12 0 1 0 1 NA
76 4 1 1 8.199219 16 6 1 1 0 0 0
70 4 0 0 7.799805 12 8 1 0 0 0 1
55 4 1 0 14.798828 13 9 1 1 0 0 0
80 4 0 1 11.699219 14 8 0 1 0 1 NA
67 4 1 0 9.599609 12 9 1 1 0 0 0

C.8 D.8 Y.8 C.12 D.12 Y.12 C.16 D.16 Y.16 C.20 D.20 Y.20
NA NA NA NA NA NA NA NA NA NA NA NA
0 0 1 NA NA 1 NA NA 1 NA NA 1
NA NA 1 NA NA 1 NA NA 1 NA NA 1
0 0 0 0 0 0 0 0 0 0 0 0
NA NA NA NA NA NA NA NA NA NA NA NA
0 0 1 NA NA 1 NA NA 1 NA NA 1
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Implications

In the discrete time-to-event setup, with wide format, we have to consider the
following:

We have to choose a time-ordering of variables in each interval

If Yt = 1, then Yt+1 = 1 by definition: “once you are dead, you stay dead”,
i.e. the probability of an event should not decrease over time

There are so-called recurrent event setups for which this does not apply, but we
do not consider them here

If Dt = 1, then Yt+1 = 0 (NA) by definition: individuals who experience a
competing event can never experience the event of interest anymore; also
Yt−1 = 0.
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Estimands without competing risks: the risk

For now, we assume that A does not vary over time.

The risk of the event of interest at time t , had all individuals been assigned A = a is:

P(Y a
t = 1) .

For a binary treatment, we can define the ATE as:

P(Y 1
t = 1)− P(Y 0

t = 1) .
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Hazards

The discrete-time hazard of the event of interest at time t under A = a is:

P(Y a
t = 1|Y a

t−1 = 0)

This is identical to

P(T a ∈ (t − 1, t ]|T a > t − 1)

where T a is the counterfactual time to the event under a.



Methods in Epi
Michael Schomaker

Introduction

Estimands
without competing risks

with competing risks

Censoring Revisited

Identification

Estimation

Separable Effects

Hazard of Hazard
Ratios

Summary

Bibliography

Page 13 of 81

Continuous-time hazard

The continuous-time hazard of the event of interest at time t under A = a is:

lim
∆t→0

1
∆t

P(T a ∈ (t , t +∆t ] | T a > t)

Without intervening on A, we have the observed data hazard:

lim
∆t→0

1
∆t

P(t < T ≤ t +∆t ] | T > t) (1)

Standard time-to-event analysis is, for example, concerned with the PDF [f(t)], CDF
[F(t)] and survival function [1-F(t)] of T ; not T a.
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More on the hazard

Unlike the risk, the hazard is defined conditional on survival until time t − 1

If

P(Y 1
t = 1|Y 1

t−1 = 0) ̸= P(Y 0
t = 1|Y 0

t−1 = 0) ,

this still does not necessarily imply that A has an effect on Y !

This is because the hazards t may differ simply because of different individuals
who survive until t − 1 under a = 1 versus a = 0 due to treatment effects before
time t − 1
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More on the hazard (II)

The graphical intuition on why the difference or ratio of two hazards can typically not
be interpreted as a causal effect, is selection (collider) bias:

A Yt−1 . . . Yt

U

We will discuss this important point later in detail, under the “hazard of hazard
ratios” section
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Estimands with competing events

Notation: we use the overbar to denote the history of a variable:

Ȳt = (Y1, . . . ,Yt)

D̄t = (D1, . . . ,Dt)

...

The risk under elimination of competing events is defined as

P(Y a,d̄t=0
t = 1)

and also known as marginal cumulative incidence or net risk.

Example: In the prostate cancer example, we can ask: “What is the risk of having
died due to prostate cancer at 60 weeks, if it was not possible to have died for
any other reason”.
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Risk under elimination of competing event

Intervening on the competing event may not always be practically feasible or
meaningful (e.g., death); thus, it is sometimes recommended to avoid this
estimand for such competing events.

For some competing events (e.g., D as drop out) the interpretation may be
meaningful; and we will come back to this point later.

Important consideration: the competing event may likely act as a mediator
between A and Yt :

A Dt Yt

Intervening on Dt removes the arrow and thus the indirect effect of A and Yt
through Dt .
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Risk under elimination of competing event

It follows that the risk under elimination of the competing event relates to a
direct effect.

Note that we need the arrow Dt → Yt because, by definition, Yt = 0 if Dt = 1.

The average treatment effect

P(Y 1,d̄t=0
t = 1)− P(Y 0,d̄t=0

t = 1) (2)

is called the controlled direct effect and a possible effect measure under
competing events.
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Risks without elimination of the competing event

The risk without elimination of competing events is

P(Y a
t = 1)

and also called the cause-specific cumulative incidence, crude risk, or
subdistribution function. It can be represented as

P(T a < t ,Da = 1)

where Da = 1 refers to the event of interest and Da = 2 to the competing event
(under A = a).
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Risks without elimination of the competing event

Similarly, we can define the risk of the competing event as

P(Da
t = 1)

which is the cause-specific cumulative incidence, crude risk, or subdistribution
function for cause Da = 2.

It makes sense to present both risks simultaneously as they are deterministically
related, i.e. the risk of P(Y a

t = 1) depends on how many competing events occurred
under a before time t , and vice versa.

Example: We can ask what the risk of death due prostate cancer would have
been at time t , under either estrogen therapy and placebo, if we did not intervene
on competing reasons of death; but calculate those risks too.
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Prostate cancer example1

1Source: Stensrud et al. [2]. We’ll discuss estimation of these curves later
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Causal effects

Based on the above considerations, we can define the following average treatment
type of causal effect measures:

P(Y 1
t = 1)− P(Y 0

t = 1) (3)
P(D1

t = 1)− P(D0
t = 1) (4)

and

P(Y 1
t = 1)/P(Y 0

t = 1)
P(D1

t = 1)/P(D0
t = 1)
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Composite outcomes

A simple estimand in the presence of competing events is the result of redefining
the event of interest as a composite outcome of both the event of interest and the
competing event(s)

P(Y a
t = 1 or Da

t = 1) ,

with the corresponding effect measure:

P(Y 1
t = 1 or D1

t = 1)− P(Y 0
t = 1 or D0

t = 1) (5)

Example: We can ask for the all-cause probability of death under either estrogen
therapy or the placebo. In the given example, this may however not make sense
as the whole point of the therapy is to evaluate whether it is helpful with respect
to prostate cancer.
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Conditional risks

We can evaluate the risk among those individuals who did not experience any
competing event.

P(Y a
t = 1 | Da

t = 0) ,

A corresponding effect measure would be:

P(Y 1
t = 1 | D1

t = 0)− P(Y 0
t = 1 | D0

t = 0) (6)

Intuitively clear that the number of individuals with competing events may be
different under a = 0 and a = 1; thus, such effect measures may not be meaningful.

Additionally, conditioning on Dt may block the indirect effect and add collider bias:

A Dt YtL0
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Survivor average causal effect

The Survivor Average Causal Effect (SACE), or Principal Stratum Effect, is

P(Y 1
t = 1|D0

t = 0,D1
t = 0)− P(Y 0

t = 1|D0
t = 0,D1

t = 0) . (7)

It is a direct treatment effect because we condition on Da
t .

It is defined on the population of people who would have “survived” (i.e., not
experienced the competing event) regardless of treatment.

Example: We can ask what the risk of death due to prostate cancer would have
been at time t among those patients that would not have died due to any reasons
other than prostate cancer, independent of whether they would have received
estrogen therapy or placebo.
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Counterfactual hazards under competing events

As in the case without competing events, we can look at hazards rather than risks.
For example, the hazard under elimination of competing events, also called
marginal hazard, is

P(Y a,d̄t=0
t = 1|Y a,d̄t−1=0

t−1 = 0) .

An equivalent definition is, as in the case without competing events, related to the
counterfactual survival time:

P(T a,d̄t=0 ∈ (t − 1, t ] | T a,d̄t=0 > t − 1) .
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Counterfactual hazards under competing events

Similarly, we have the hazard without elimination of competing events, or
subdistribution hazard, defined as

P(Y a
t = 1|Y a

t−1 = 0) .

Those individuals for which Y a
t−1 = 0 holds consist of both

1 individuals who did neither experience the event of interest nor the competing
event and

2 individuals who who did not experience the event of interest, but the competing
event.

Thus, an equivalent definition is:

P(T a ∈ (t − 1, t ],Da = 1|T a > t − 1 or {T a ≤ t − 1 and Da ̸= 1})
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Counterfactual hazards under competing events

The hazard conditioned on competing events, or the cause-specific hazard, is the
hazard of the event of interest among those who have not previously experienced
the competing event:

P(Y a
t = 1|Y a

t−1 = Da
t = 0) .

The above definitions give rise to the following possible contrasts:

P(Y 1,d̄t=0
t = 1|Y 1,d̄t−1=0

t−1 = 0)− P(Y 0,d̄t=0
t = 1|Y 0,d̄t−1=0

t−1 = 0) (8)

P(Y 1
t = 1|Y 1

t−1 = 0)− P(Y 0
t = 1|Y 0

t−1 = 0) (9)

P(Y 1
t = 1|Y 1

t−1 = D1
t = 0)− P(Y 0

t = 1|Y 0
t−1 = D0

t = 0) (10)

We could, of course, also look at ratios rather than differences.
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Counterfactual hazards under competing events

The same considerations as in the case without competing events apply: a
difference in hazards under a = 1 and a = 0 still does not necessarily imply that A
has an effect on Y ! This is because the hazards at t may differ simply because of
different individuals who survive until t − 1 under a = 1 versus a = 0 due to
treatment effects before time t − 1.

A Yt−1 . . . Yt

U

This is true for both the discrete-time and continuous-time hazard.
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Censoring

We have so far considered (right-)censoring due to loss to follow-up, end of
follow-up, transfer to different facilities etc.

Example: In the prostate cancer study, we considered censoring due to end
of follow-up at 60 months. There is also censoring due to drop-out before 60
months.

All our estimands above are defined without referring to censoring so far.

As above, we can intervene on, condition on, or not specifically refer to censoring
events and reflect this in our estimand definitions.

Loss to follow-up is typically considered to be a censoring event. In most cases, we
would like to know the outcome that would have been observed without loss to
follow-up, i.e. we’d like to intervene on it.
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Is a competing event a censoring event?

Definition

A censoring event is any event occurring at t that ensures that the values of all
future counterfactual outcomes under a are unknown even for an individual
receiving the intervention a.

This means the chosen estimand determines whether the competing event is a
censoring event or not.
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Is a competing event a censoring event?

For the total effect (3), the subdistribution hazard contrast (9) and the cause-specific
hazard contrasts (10), the competing event is not a censoring event because
individuals with competing event at t , i.e. (Y a

t = 0,Da
t = 1), have a known future

counterfactual outcome: Y a
t+1 = 0.

Example: In the prostate cancer study, we may want to estimate the risk of death
due to prostate cancer under estrogen therapy, without eliminating the compet-
ing event. For all patients, we know that if death due to any reason other than
prostate cancer occurs at t , then death due to prostate cancer can not occur at
t + 1. Thus, mortality due to other reasons is not a competing event under the
above definition.
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Is a competing event a censoring event?

For the direct effect (2) and the hazard contrast (8), for which we intervene on the
competing event, the competing event is a censoring event. This is because
individuals who experience a competing event at t have an unknown counterfactual
future counterfactual outcome Y a,d̄t=0

t+1 .

Example: In the prostate cancer study, we may want to estimate the risk of
death due to prostate cancer under estrogen therapy, if other deaths were not
“allowed”a. For all patients, we know that death due to any reason other than
prostate cancer can not occur at any t . The event indicator “death due to other
reasons” at t does not tell us what Y a,d̄t=0

t+1 would be. Thus, mortality due to other
reasons is a competing event under the above definition.

awe discussed the complication of picking such an estimand already
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Identification assumptions

Under which assumptions can we identify the estimands (2) - (10)?

Nothing new:

consistency

positivity

conditional exchangeability

And we can check whether conditional exchangeability holds for a given causal
model graphically, with a DAG.

We only need to consider the index t , the time ordering and reflect on which
variables we intervene.



Methods in Epi
Michael Schomaker

Introduction

Estimands
without competing risks

with competing risks

Censoring Revisited

Identification

Estimation

Separable Effects

Hazard of Hazard
Ratios

Summary

Bibliography

Page 35 of 81

Conditional exchangeability

For 1 time point, we defined conditional exchangeability as:

Y a
∐

A | L ∀A = a,L = l .

We also said, that if L satisfies the back-door criterion, cond. exchangeability is
achieved.

For multiple time points, we simply have statements in the spirit of

Y interventions
t

∐
all intervention variables | past
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Conditional exchangeability

Let’s take the ordering (Ct ,Dt ,Yt ,Lt) at t , and stick to a single time point
intervention variable A = A0.

Everything we do also holds for Āt = (A1, . . . ,At), but we keep it simple and stick to
the prostate cancer example.

For the direct effect, defined in (2), the exchangeability statement is then

Y a,d̄t=c̄t=0
t

∐
A | L0 (11)

Y a,d̄t=c̄t=0
t

∐
Ct ,Dt | L̄t−1 = l̄t−1, Ȳt−1 = C̄t−1 = D̄t−1 = 0,A = a (12)

because we intervene on the censoring and competing event indicator!
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Conditional exchangeability holds in this DAG, because no arrows from unmeasured
variables into interventions (i.e. A,D,C)

U

L0

A0

C0

D0

Y0

L1

A1

C1

D1

Y1

L2

A2

C2

D2

Y2

...Lt

At

...Ct

...Dt

...Yt

Time
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More on the DAG

As is the prostate cancer example, we have only A0 and L0

Some paths are in grey, for better readability; some are omitted (like U → Yt )

We see one direct effect in red, and one indirect one in orange

A0 is randomized; no arrows into A0; thus (11) holds

Also (12) holds: no open back-door paths from Dt/Ct to Yt
→ we have measured/adjusted for L0

2

2there seems to be an open back-door path through C0; but we intervene on C, it is thus a constant and in probability statements constants are always implicitly
conditioned on.
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Conditional exchangeability does not hold in this DAG, because of the arrow U → D0,
and the associated back-door path

U

L0

A0

C0

D0

Y0

L1

A1

C1

D1

Y1

L2

A2

C2

D2

Y2

...Lt

At

...Ct

...Dt

...Yt

Time
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What does this mean practically?

Simply ask yourself why people are being treated, censored or experience a
competing event. If any of these reasons also cause, directly or indirectly, the
outcome, then there is an open back-door path. It may not be needed to necessarily
draw a DAG.

Example: In the prostate cancer study, the competing event is death due to rea-
sons other than prostate cancer. There might be unmeasured factors, for in-
stance comorbidities, that increase both the probability of death due to prostate
cancer and due to other reasons. In this case, there would be unmeasured con-
founding, the direct effect can not be identified, and hence not consistently es-
timated. We would have to resort to a statistical interpretation as discussed in
Chapter 8.
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What about the risk without eliminating the competing event?

The same logic applies, but –as we discussed– the competing event is not a
censoring event! We do not intervene on it.

Thus, the identifying assumptions are weaker:

Y a,c̄t=0
t

∐
A | L0 (13)

Y a,c̄t=0
t

∐
Ct ,Dt | L̄t−1 = l̄t−1, D̄t−1 = d̄t−1, Ȳt−1 = C̄t−1 = D̄t−1 = 0,A = a

(14)

We are not requiring conditional exchangeability for D!
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Conditional exchangeability holds with the green path; but not with the blue path

U

L0

A0

C0

D0

Y0

L1

A1

C1

D1

Y1

L2

A2

C2

D2

Y2

...Lt

At

...Ct

...Dt

...Yt

Time



Methods in Epi
Michael Schomaker

Introduction

Estimands
without competing risks

with competing risks

Censoring Revisited

Identification

Estimation

Separable Effects

Hazard of Hazard
Ratios

Summary

Bibliography

Page 43 of 81

Example

Example: In the prostate cancer study, we can ask what the risk of death due
prostate cancer would have been at time t , under either estrogen therapy and
placebo, if we did not intervene on competing reasons of death. Identification
of the corresponding estimand would work even if there are comorbidities that
affect multiple reasons to die (prostate cancer and others). However, if there are
reasons for drop-out (Ct ) that also affect the event of interest, this would be a
problem. While it is not impossible to think of such reasons, one could speculate
that in the given study this is not a major concern.
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Consistency and Positivity

For 1 time point, we defined positivity as

P(A = a|L = l) > 0 ∀l with P(L = l) ̸= 0 . (15)

and consistency as

If A = a, then Y a = Y for ∀ a ;

For time-to-event data, we need similar statements but need not only refer to A, but
also Ct and Dt if we intervene on them.
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Positivity

For the direct effect (2), we need both (15) to hold and

P(Ct = 0,Dt = 0|L̄t−1 = l̄t−1,Ct−1 = Dt−1 = Yt−1 = 0,A = a) > 0
when f (a, l̄t−1,0,0,0) ̸= 0 . (16)

That is, we require that for any possible level of treatment and covariate history,
among those that are uncensored, some individuals remain uncensored.

With additional parametric modeling assumptions, the assumption can sometimes
be relaxed.

For the total effects, we only need to refer to Ct and not Ct and Dt .

Again, we are not going into more details.
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Consistency

For the direct effect (2), we require

If A = a, and C̄t = D̄t = 0 then Ȳ a,c̄=d̄=0
t = Ȳt and L̄a,c̄=d̄=0

t = L̄t (17)

For the total effects, we only need to refer to Ct and not Ct and Dt .

What could be an issue with consistency in the context of the direct effect?

Again, we are not going into more details.
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Identification of hazards

The same assumptions that allow identification of a direct effect on the event of
interest (2) also give identification of a contrast in hazards under elimination of
competing events (8).

The same assumptions that allow identification of the total effect on the event of
interest (3) also give identification of the counterfactual contrast in subdistribution
hazards (9).

The same assumptions that allow identification of the total effect on the event of
interest (3), coupled with an additional set of assumptions that allow identification of
the total effect on the competing event (4), allow identification of the counterfactual
contrast in cause-specific hazards (10).
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However, as we discussed already, contrasts of hazards typically do not have a causal
interpretation in most realistic applications
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Other estimands

When using the composite outcome to define effect measures, as in (5), there is no
competing event anymore and identifying assumptions are weaker. As discussed, in
the prostate example and many other examples, the combination of events into one
outcome may not answer the question of interest; but there are a few cases where
this estimand is a great alternative.

The principal stratum effect (7), i.e. SACE, can also be identified, but requires more
complicated thoughts on “cross-worlds” and monotonicity. Its estimation is however
not much more complicated than the other effect measures.
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g-formula identification

Theorem

Under conditional exchangeability, positivity and consistency –as defined in (11),
(12), (15), (16), and (17)– it holds that the risk under elimination of competing and
censoring events can be identified as

P(Y a,c̄t=d̄t=0
t = 1) =

∫
l̄∈L̄t



t∑
k=0

P(Yk = 1|Yk−1 = Ck = Dk = 0, L̄k−1 = l̄k−1,A = a)×

k∏
j=0

P(Yj−1 = 0|Yj−2 = Cj−1 = Dj−1 = 0, L̄j−2 = l̄j−2,A = a)×

f (lj |̄lj−1,Yj = Cj = Dj = 0,a)


d l̄ .

(18)
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More on the theorem

The results looks complex, but in words it just says that we standardize
(marginalize) with respect to the (post intervention) confounder distribution (as
with a single time point), take the deterministic nature of C,D,Y into account
and add up the risks over time. That’s all.

For the general case, we can replace A by Āt .

Proof: is long and thus omitted. It uses the same ingredients we used in the
single time point case, i.e. laws of probability, conditional exchangeability,
positivity, consistency

For the total effects, we need to add one more factor, i.e. the conditional
distribution of Dj , as we do not intervene on it.
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Estimation

Estimation works by plugging into (18)

We estimate the integral by simulation

We do the same as in the single time point case:

go from left (past) to right (future) in the data

create counterfactual datasets where we set A = a (e.g., 0/1)

simulate what would happen past the first intervention under A = a

Only differences:

We intervene on > 1 variables

We have deterministic relationships between C/D/Y
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Algorithm

1 Estimate outcome and confounder models at all t :

a Estimate P(Yt = 1|Yk−1 = Ck = Dk = 0, L̄k−1 = l̄k−1,A = a)
(among uncensored individuals at time t that did not have any event previously)

b Estimate the conditional distributions of the time-varying confounders Lt

c For total effects only: estimate the distributions of Dt conditional on the past

2 Create a counterfactual data set and set A = 1
(keep data for pre-intervention variables, i.e. use empirical distributions)
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Algorithm (II)

3 Simulate data past (first) intervention:

generate stochastic draws of the conditional distributions from steps 1 forward in
time, under the respective intervention A = a by using the data from step 2

this produces a counterfactual data set

apply deterministic relationship: Yt = 1 if Yt−1 = 1
(for total effect: Dt = 1 if Dt−1 = 1: Yt = 0 if Dt−1 = 1; Dt = 0 if Yt−1 = 1)

4 The mean of the estimated Yt is then an estimate of P(Y 1,c̄=d̄=0
t = 1)

(Total effect: the mean of the estimated Dt is an estimate of P(D1,c̄=0
t = 1))

5 Repeat steps 2-4 for A = 0 and calculate the respective direct/total effects
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Estimation of direct effect with

Data with pre-intervention variables from Young et al. [1], in wide format:

age na hx hemoglobin A C.4 D.4 Y.4 C.8 D.8 Y.8 C.12 ...
... .. .. ...

247 71 0 1 14.09961 1 0 1 NA NA NA NA NA ...
248 73 1 1 13.59961 1 0 0 0 0 0 0 0 ...
249 73 1 0 11.69922 0 0 0 0 0 0 0 0 ...
250 68 1 0 13.39844 1 0 0 0 0 0 0 0 ...
251 73 1 1 16.79688 1 0 0 0 0 1 NA NA ...
252 82 1 1 12.39844 1 0 0 0 0 0 0 0 ...
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Estimation of direct effect with (II)

1 # Step 1a: Fit models for Y_t; model specification based on variables used in
paper, but with some model selection for bias-variance tradeoff

2 # NOTE: models are fit among those individuals who are uncensored and did
3 # *not* experience any event yet
4

5 mY.4 <- gam(Y.4 ˜ A+s(hemoglobin), data=prostate, family="binomial")
6 mY.8 <- gam(Y.8 ˜ A+s(hemoglobin), data=prostate, family="binomial")
7 mY.12 <- gam(Y.12 ˜ A+hx+s(hemoglobin), data=prostate, family="binomial")
8 ...
9

10 # Step 1b: fit models for L_t: no time-varying confounders, so not needed
11 # Step 1c: fit models for D_t: not needed as we intervene on D_t
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Estimation of direct effect with (III)

1 # Step 2:
2 # set A=1, leave L_0, and set everything post-intervention = NA
3 # C and D not needed as everyone should be uncensored in any case
4 sdata1 <- prostate
5 sdata1 <- subset(sdata1, select=-c(grep("C.",colnames(sdata1)),
6 grep("D.",colnames(sdata1))))
7 sdata1[,grep("Y.",colnames(sdata1))] <- NA
8 sdata1$A <- 1

Data looks now as follows:

age normal_activity hx hemoglobin A Y.4 Y.8 Y.12 ...
1 69 1 1 13.39844 1 NA NA NA ...
2 67 1 0 13.39844 1 NA NA NA ...
3 75 1 0 13.00000 1 NA NA NA ...
4 73 1 1 12.59961 1 NA NA NA ...
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Estimation of direct effect with (IV)

1 # Step 3: simulate under A=1
2

3 sdata1$Y.4<-rbinom(n=252,1,prob=predict(mY.4,newdata=sdata1,type="response"))
4 sdata1$Y.8<-rbinom(n=252,1,prob=predict(mY.8,newdata=sdata1,type="response"))
5 ...
6

7 # time-to-event data: deterministic rule: if Y_t-1=1, then Y_t=1
8 sdata1$Y.8[sdata1$Y.4==1]<-1
9 sdata1$Y.12[sdata1$Y.8==1]<-1

10 ...

age na hx hemoglobin A Y.4 Y.8 Y.12 Y.16 Y.20 Y.24 Y.28 Y.32
1 69 1 1 13.39844 1 0 0 0 0 0 0 0 0
2 67 1 0 13.39844 1 0 0 0 0 0 0 0 0
3 75 1 0 13.00000 1 0 0 0 0 1 1 1 1
4 73 1 1 12.59961 1 0 0 0 0 0 0 0 0
5 74 1 1 13.59961 1 0 0 0 0 0 0 1 1
6 55 1 1 13.89844 1 0 0 0 0 0 0 0 0
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Estimation of direct effect with (V)

1 # step 4: estimate E(Y_tˆ(a,c=0, d=0)) in counterfactual data
2 psi_1 <- apply(subset(sdata1, select=colnames(sdata1)[grep("Y.",colnames(

sdata1))]) ,2,mean)
3

4 # step 5: repeat 2-4 for A=0 and draw curve of psi_1 and psi_0 over time
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Results / Direct Effect
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Estimation of total effect with

1 # Step 1a and b: as with direct effect
2 # Step 1c: Fit models for D_t
3 mD.4 <- gam(D.4 ˜ A+hx+s(hemoglobin)+age, data=prostate, family="binomial")
4 mD.8 <- gam(D.8 ˜ A+age, data=prostate, family="binomial")
5 ...
6

7 # Step 2: intervene on C and A
8 # as C=0, no specific action is needed
9 # set A=1, leave L_0, and set everything post-intervention = NA

10 sdata1 <- prostate
11 sdata1 <- subset(sdata1, select=-grep("C.",colnames(sdata1)) )
12 sdata1[,c(grep("Y.",colnames(sdata1)),grep("D.",colnames(sdata1)))] <- NA
13 sdata1$A <- 1
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Estimation of total effect with (II)

1 # Step 3
2 sdata1$D.4<-rbinom(n=252,1,prob=predict(mD.4,newdata=sdata1,type="response"))
3 sdata1$Y.4<-rbinom(n=252,1,prob=predict(mY.4,newdata=sdata1,type="response"))
4 sdata1$D.8<-rbinom(n=252,1,prob=predict(mD.8,newdata=sdata1,type="response"))
5 ...
6

7 # if Y_t-1=1, then Y_t=1; and if D_t-1=1, then D_t=1
8 # also: if D_t=1, then Y_t=0 and if Y_t-1=1, then D_t=0
9 sdata1$Y.4[sdata1$D.4==1]<-0

10 sdata1$D.8[sdata1$D.4==1]<-1
11 sdata1$D.8[sdata1$Y.4==1]<-0
12 sdata1$Y.8[sdata1$Y.4==1]<-1
13 sdata1$Y.8[sdata1$D.8==1]<-0
14 ...
15

16 # Step 4
17 psi_Y_1 <- apply(subset(sdata1, select=colnames(sdata1)[grep("Y.",colnames(

sdata1))]) ,2,mean)
18 psi_D_1 <- apply(subset(sdata1, select=colnames(sdata1)[grep("D.",colnames(

sdata1))]) ,2,mean)
19

20 # Step 5: repeat 2-4 for A=0
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Results / Total Effect
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Interpretation

Estrogen therapy reduces mortality due to prostate cancer, but may increases
mortality due to other reasons; if identification assumptions hold.
(Bootstrap CI not shown)

For the direct effect, assumptions are likely not met: we have only measured
baseline confounders L0, and no Lt ; but there may be multiple unmeasured
reasons of death due to other causes that also cause death due to prostate
cancer, i.e. there is possibly some unmeasured confounding.

It is possible that the beneficial effect of estrogen therapy on prostate cancer
death is due to effects of therapy on other causes of death: when more people
die from other causes, fewer can die from prostate cancer. How can we answer
this? We need to look into the direct and indirect effects.
→ separable effects
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Why is it plug-in estimation?

Example: Consider the prostate cancer study. For t = 1, setting A = 1, the
ordering (Ct ,Dt ,Yt) in each interval, treating L0 as discrete and noting that L1 =
∅, we can write (18) as

P(Y 1,c̄1=d̄1=0
1 = 1) =

∑
l0


P(Y1 = 1|Y0 = C0 = D0 = C1 = D2 = 0,L0 = l0,A = 1)×
P(Y0 = 0|C0 = D0 = 0,L0 = l0,A = 1)× f (l0)+

P(Y1 = 0|C0 = D0 = 0,L0 = l0,A = 1)× f (l0)

For estimation, we fit 2 outcome models. Then we use the empirical distribution
for L0, set A = 1 and predict the outcome under no censoring/competing events
for the given L0,A. Assume that n = 100 and 10% die at t = 0 and another 10%
(i.e., n = 10) at t = 1. Then the estimated probability of death is simply the sum,
i.e. 20%, and this is what we get when evaluating the counterfactual dataset.
This is the same as calculating (10/90) · (1− 0.1) + 10/100. For those attending
Lifetime Data Analysis, this looks familiar.
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Separable Effects

We have learnt that competing events may often act es mediators.

We also learnt how to define and estimate direct and total effects. Thus, we
can now in principle understand the relevant pathways and if and how
treatment works.

The only problem we are left with is that in many situations interventions on the
competing events, which we require to estimate the direct effect, do not make
sense. For example, intervening on death is difficult to justify. In other
situations, it may be o.k., like when “competing” events are defined as
censoring-type of events (transfer to other programs, relocation) or very
specific events (death by car accident).

If there are such interpretational problems, we can address those by so-called
separable effects – at least if it is possible to decompose the (biological)
mechanisms through which treatment works.
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Separable Effects

Suppose A acts on Y and D through different mechanisms and we describe those
as AD and AY :

A AD D Y

AY

Example: In the prostate cancer study, the estrogen diethylstilbestrol (DES, A)
reduces prostate cancer mortality by suppressing testoserone production (AY );
at the same time DES is believed to have negative effects, for example related
to cardiac events due to complex biological mechanisms (AD). We can think of
interventions (e.g., other hormons) which reduce testoserone without having the
same negative effects (on D), i.e. we intervene on AY only. Similarly, we can
conceptualize interventions which target AD only.
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Definitions

We define

Y aY=a,aD=a
t = Y a

t ,

DaY=a,aD=a
t = Da

t .

The separable direct effect is

P(Y aY=1,ad
t )− P(Y aY=0,ad

t ) , (19)

The separable indirect effect is

P(Y aY ,ad=1
t )− P(Y aY ,ad=0

t ) . (20)

The separable direct and indirect effect add up to the total effect:

P(Y a=1
t )− P(Y a=0

t ) . (21)
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Identification

For identification, we need essentially similar assumptions as before. For
example, for the separable direct effect we still need conditional
exchangeability as defined in (11) and (12), i.e. unmeasured common causes
of both Dt and Yt are still not allowed.

Now, exchangeability need to be defined not only with respect to A, but both AD
and AY .

Most importantly, the identification formula (18) is still valid as a basis for
estimation of the separable direct effect. As before, for the total effect, we need
to multiply the conditional density of Dt to the product term.
Technically, the identification formula does not contain A, but AY (in the
outcome components) and AD (in the competing event component).
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Estimation

As the identification formula is basically the same, the estimation procedures
are the same.

This means, there is nothing new we have to calculate: we already estimated
the total and direct effect.

The difference we get, is the difference in interpretation.

We can use the results from before and plot them in 1 figure:

1 times <- seq(0,60,4)
2 plot(times,c(0,psi_1),type="s",lwd=2,lty=2, col="green")
3 lines(times,c(0,psi_Y_0),col="red",type="s",lwd=2)
4 lines(times,c(0,psi_Y_1),type="s",lwd=2)
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Results
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Interpretation

DES reduces prostate cancer mortality

→ Total effect: black curve minus red curve.

This is mostly3 due to testoserone suppression (AY ) because the indirect effect
caused by mechanisms (AD) for causes of death (D) is small (difference
between black and green curve); thus, most of the effect may be attributed to
the direct effect (difference between red and green).

Separable indirect Effect: P(Y aD=1,aY=1 = 1) − P(Y aD=0,aY=1 = 1)

Separable direct Effect: P(Y aD=0,aY=1 = 1) − P(Y aD=0,aY=0 = 1)

The total effect of DES on prostate cancer mortality is not simply a
consequence of a harmful effect on death from other causes!

As discussed, the identification assumptions for the direct effect may not
perfectly hold due to common comorbidities.

3for the first 35 weeks this is clear, afterwards not so much anymore. In Stensrud et al. [2] the results are clearer, likely owing to a more elaborate modeling approach
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The hazard of hazard ratios

We already discussed caution around the interpretation of hazard ratios. So why
bother again?

Because the standard survival regression models, used in epidemiology, give us
hazard ratios!

The most commonly employed model is the proportional hazards model, typically
attributed to Cox. Recall the continuous-time hazard from equation (1), which we
denote as λ(t). The Cox model, in its simplest form, is:

λ(t |L) = λ0(t)× exp(βT L)

where β is a vector of regression coefficients and λ0(t) is the baseline hazard.
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The hazard of hazard ratios

The model parameters β are estimated with maximum partial likelihood estimation.
Estimation details are discussed in Lifetime Data Analysis.

Suppose we only have 1 covariate L1, which is binary. Then it is easy to see that

λ(t |1)
λ(t |0)

= exp(β1) ,

and hence the hazards are proportional. The hazard ratio does not vary over time, it
is constant.

Example: In the prostate cancer study, fitting a Cox model with the variables used
previously as covariates, yields β1 ≈ −0.3 (the coefficient associated with A) and
exp(β1) ≈ 0.74. This means, after adjusting for covariates, the mortality hazard
is 0.73 times lower with treatment compared with no treatment. It is also possible
to obtain an estimate of λ0(t); note however that the treatment effect does not
vary over time (with this model specification).
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The hazard of hazard ratios

1 Many studies report only a single hazard ratio, obtained from a Cox, or similar,
model. This may be uninformative because the hazard ratio may be
time-varying; in fact, it is often argued that most epidemiological studies have
treatment effects that change over time [3]. A single HR is a weighted average
of the time-varying hazard ratios. The cumulative benefit at a particular time
point can only be conveyed by a comparison of risks in each group.

2 This problem can be fixed easily by reporting period-specific hazard ratios,
using refined Cox model specifications or the estimation methods we discussed
earlier, but then we likely face the built-in selection bias, as discussed:

A Yt−1 . . . Yt

U
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The hazard of hazard ratios in competing risks settings

In competing risks settings, it is often recommended to use regression models, that

1 either model the conditional cause-specific hazards λk (t |L) for event D = k ,
where

λk (t) = lim
∆t→0

1
∆t

P(t < T ≤ t +∆t ,D = k | T > t)

2 or the conditional subdistribution hazard λ∗
k (t |L) with

λ∗
k (t) = lim

∆t→0

1
∆t

P(t < T ≤ t +∆t ,D = k | T > t or (T ≤ t and D ̸= k)) .

We can estimate (1) by using the Cox model and standard software, when
censoring observations if they experience a competing event. We can estimate (2)
with specific packages, e.g. cmprsk in R.
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Reflections

When we measure the right variables, and achieve conditional exchangeability,
we can in principle get causal estimands through these models. Those are
conditional on L, rather than marginal, but let’s ignore this for now.

But the logic from before applies again: we will face the built-in selection bias
whenever there are unmeasured common causes of Yt−1 and Yt (i.e. almost
always in epidemiology).

Adjusted risk/survival curves, as we constructed, avoids this problem and can
be easily understood.

Under purely descriptive aims, we can simply plot cumulative incidences rather
than fitting models. Then we can tell what proportion of individuals experienced
event D = k before any other event occurred. Estimation can be facilitated by
the g-formula, as we did, or typically differently (somewhat simpler).

Of course, there are situations where the survival bias is small, the
subdistribution hazard is a good summary measure over time and the model
hence useful.
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Summary

In time-to-event analyses, competing events may prohibit individuals to
experience the event of interest

A fundamental insight is that the competing event may be a mediator on the
path from A to Y .

The simplest way to fix this, is to combine Y and D into one outcome. There is
absolutely nothing wrong in doing this, but in many cases this may not answer
the question of interest (e.g. prostate cancer study). An example where this
works would be the combined outcome (AIDS [=clincally severe event], death),
see target trial from chapter 6.
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Summary

Historically, classic estimands in competing risk settings relate to hazards. We
have learnt that hazards as estimands come with a built-in selection bias in
most realistic cases, which is not ideal when we want to learn about
(time-varying) treatment effects.

Estimands that are based on risks avoid this problem.

We saw that we could condition, intervene or not intervene on the competing
event.

Conditioning on competing events, can easily yield collider bias; whereas
intervening or not intervening are viable options.

That is, we concluded that the risk under elimination of competing events as
well as the cause-specific cumulative incidences are good target estimands.
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Summary

We need less assumptions to identify the cumulative incidences (risk without
intervening); we can –in particular– have unmeasured common causes of the
outcome and the competing event. Thus this would be the most preferable
estimand to pick.

To give the most nuanced interpretations, it would be good to additionally
estimate the direct (and indirect) effect; if this can be somehow defended. Then
we know for which reasons we observe treatment effects. A conceptualization
through seperable effects can help here to disentangle the mechanisms at
work.

Estimation through the g-formula always works. We discussed already some
disadvantages (bootstrapping, model specifications). However, there is no time
to discuss alternatives.
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