Introduction to Statistics
 An Applied 3-Day Hands-On Workshop with ${ }^{\text {R }}$

Lecture 10: Regression
November 2019
Version: October 15, 2019

Michael Schomaker
UMIT University, Institute of Public Health, MDM and HTA

Model Formulas

Doing regression in \mathbb{R} requires the use of "model formulas" which state the outcome, covariates, the relationship between covariates, amongst others.

```
> # all these are model formulae
> f1 <- formula(time~ temperature)
> f2 <- time~temperature
> f3 <- as.formula(time~ temperature)
> f4 <- as.formula("time~temperature")
>
> # Linear Model
> lm(time~ temperature)
Coefficients:
(Intercept) temperature
    59.754 -0.406
> # the same
> lm(f1)
> lm(f2)
> lm(f3)
> lm(f4)
```

Basic Concepts

Model Formula

Linear Regression Object Structure

Categorical Variables
Dummy Coding ANOVA

Transformations
Interactions
categorical-continuous categorical-categorical continuous-continuous

Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Linear Regression

UMIT

Attach data, or use option data:

```
```

> detach(pizza)

```
```

> detach(pizza)
> lm(time~ temperature) \# error
> lm(time~ temperature) \# error
Fehler in eval(predvars, data, env) : Objekt 'temperature'
Fehler in eval(predvars, data, env) : Objekt 'temperature'
nicht gefunden
nicht gefunden
> lm(time~}temperature, data=pizza) \# work
> lm(time~}temperature, data=pizza) \# work
Call:
Call:
lm(formula = time ~ temperature, data = pizza)
lm(formula = time ~ temperature, data = pizza)
Coefficients:
Coefficients:
(Intercept) temperature
(Intercept) temperature
59.754 -0.406

```
```

 59.754 -0.406
    ```
```

Basic Concepts
Model Formula

Linear Regression

Object Structure
Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Formulae with multiple variables

Use '+':

```
> # multiple covariates
> lm(time~temperature+free_wine+operator+bill)
Call:
lm(formula = time ~ temperature + free_wine + operator +
    bill)
Coefficients:
    (Intercept)
            40.73511
                        temperature
                                -0.22184
                                bill
    0.07937
                                0.13186
```


UMIT

Basic Concepts
Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Standard Regression Commands (I)

UMIT

```
m1 <- lm(time~temperature+free_wine+bill)
```

m1 <- lm(time~temperature+free_wine+bill)
summary(m1) \# main output
summary(m1) \# main output
confint(m1) \# confidence intervals
confint(m1) \# confidence intervals
coefficient(m1) \# extract coefficients
coefficient(m1) \# extract coefficients
residuals(m1) \# extract residuals
residuals(m1) \# extract residuals
plot(m1) \# plot diagnostics
plot(m1) \# plot diagnostics
termplot(m1) \# plot coefficients - makes sense?
termplot(m1) \# plot coefficients - makes sense?
predict(m1) \# predict Y (with measured X)
predict(m1) \# predict Y (with measured X)
predict.lm(m1) \# the same
predict.lm(m1) \# the same
nd <- as.data.frame(matrix(c (50,1,50),ncol=3,nrow=1,
nd <- as.data.frame(matrix(c (50,1,50),ncol=3,nrow=1,
dimnames=list(NULL, c("temperature","free_wine","bill"
dimnames=list(NULL, c("temperature","free_wine","bill"
))))
))))
predict(m1, newdata=nd) \# predict Y (with new data)

```
predict(m1, newdata=nd) # predict Y (with new data)
```

Basic Concepts
Model Formula

Linear Regression

Object Structure
Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Standard Regression Commands (II)

```
> summary(m1) # main output
Call:
lm(formula = time ~ temperature + free_wine + bill)
Residuals:
    Min 1Q Median 3Q Max
-11.9689 -2.8128 0.0574 2.9353 11.8918
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.75604 1.43718 28.36 <2e-16 ***
temperature -0.22162 0.01852 -11.97 <2e-16 ***
free_wine 9.74867 0.30888 31.56 <2e-16 ***
bill 0.13196 0.01147 11.51 <2e-16 ***
Signif. codes: 0 '***' 0.001 `**' 0.01 `*' 0.05 '`. 0.1
    '' 1
Residual standard error: 4.117 on 1262 degrees of freedom
Multiple R-squared: 0.595, Adjusted R-squared:
    0.5941
F-statistic: 618.1 on 3 and 1262 DF, p-value: < 2.2e-16
```

UMIT

Basic Concepts

Model Formula

Linear Regression

Object Structure
Categorical Variables
Dummy Coding ANOVA

Transformations
Interactions
categorical-continuous categorical-categorical continuous-continuous

Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Standard Regression Commands (III)

UMIT

Basic Concepts
Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Standard Regression Commands (IV) - termplot

Basic Concepts
Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Object Structure \rightarrow use str

```
> # What is the structure of a regression object?
> str(m1)
List of 12
    $ coefficients : Named num [1:4] 40.756 -0.222 9.749
    0.132
    ..- attr(*, "names")= chr [1:4] "(Intercept)" "
        temperature" "free_wine" "bill"
    $ residuals : Named num [1:1266] 1.7998 -3.3022
    -0.6949 -0.4454 0.0175 ...
    ..- attr(*, "names")= chr [1:1266] "1" "2" "3" "4" ...
    $ effects : Named num [1:1266] -1.22e+03 9.97e+01
    -1.39e+02 4.74e+01 7.31e-02 ...
    ..- attr(*, "names")= chr [1:1266] "(Intercept)" "
        temperature" "free_wine" "bill" ...
$ rank : int 4
$ fitted.values: Named num [1:1266] 33.3 28.5 46.3 29.8
    30 ...
    ..- attr(*, "names")= chr [1:1266] "1" "2" "3" "4" ...
    $ assign : int [1:4] 0 1 2 3
    $ qr :List of 5
    ..$ qr : num [1:1266, 1:4] -35.5809 0.0281 0.0281
        0.0281 0.0281 ...
    .. ..- attr(*, "dimnames")=List of 2
```



```
.. \(\$ \mathrm{qr}:\) num \([1: 1266,1: 4]-35.58090 .02810 .0281\) \(0.02810 .0281 \ldots\)
```

16
..

Structure of the summary (I)

```
> m1$coefficients # instead of coefficients(m1)
```

> m1$coefficients # instead of coefficients(m1)
> m1$residuals \# instead of residuals(m1)
> m1\$residuals \# instead of residuals(m1)
>
>
> sm1 <- summary(m1)
> sm1 <- summary(m1)
> str(sm1)
> str(sm1)
List of 11
List of 11
\$ call : language lm(formula = time ~ temperature
\$ call : language lm(formula = time ~ temperature
+ free_wine + bill)
+ free_wine + bill)
\$ terms :Classes 'terms', 'formula' language time
\$ terms :Classes 'terms', 'formula' language time
~ temperature + free_wine + bill
~ temperature + free_wine + bill
.. ..- attr(*, "variables")= language list(time,
.. ..- attr(*, "variables")= language list(time,
temperature, free_wine, bill)
temperature, free_wine, bill)
.. ..- attr(*, "factors")= int [1:4, 1:3] 0 1 0 0 0 0 1
.. ..- attr(*, "factors")= int [1:4, 1:3] 0 1 0 0 0 0 1
0 0 0 ...
0 0 0 ...
..- attr(*, "dimnames")=List of 2

```
    .. .. ..- attr(*, "dimnames")=List of 2
```


Structure of the summary (II)

```
> sm1$coefficients # full table
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.7560432 1.43718261 28.35829 2.827210e-137
temperature -0.2216195 0.01851666 -11.96865 2.400888e-31
free_wine 9.7486734 0.30888111 31.56125 1.212332e-161
bill 0.1319583 0.01146885 11.50580 3.331587e-29
> sm1$adj.r.squared
[1] 0.5940671
```


UMIT

Basic Concepts
Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Create your own summary (I)

UMIT

```
> # Make your own summary
> mysummary <- round(cbind(coefficients(m1),confint(m1),
    sm1$coefficients[,4]), digits=4)
> colnames(mysummary) <- c("Est.", "LCI","UCI","pvalue")
> mysummary
    Est. LCI UCI pvalue
    (Intercept) 40.7560 37.9365 43.5756 0
temperature -0.2216-0.2579-0.1853 0
free_wine 9.7487 9.1427 10.3547 0
bill 0.1320 0.1095 0.1545 0
free_wine \(9.7487 \quad 9.1427 \quad 10.3547 \quad 0\)
\(\begin{array}{lllll}\text { bill } 0.1320 & 0.1095 & 0.1545 & 0\end{array}\)
```

Basic Concepts
Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Create your own summary (II)

UMIT
 UMIT

```
```

> \# Or even write your function:

```
```

> \# Or even write your function:
> ms <- function(robject){
> ms <- function(robject){

+ mysummary <- round(cbind(coefficients(robject),confint(
+ mysummary <- round(cbind(coefficients(robject),confint(
robject), summary(robject) \$coefficients[,4]), digits=4)
robject), summary(robject) \$coefficients[,4]), digits=4)
+ colnames(mysummary) <- c("Est.","LCI","UCI","pvalue")
+ colnames(mysummary) <- c("Est.","LCI","UCI","pvalue")
+ return(mysummary)
+ return(mysummary)
+ }
+ }
> ms(m1)
> ms(m1)
Est. LCI UCI pvalue
Est. LCI UCI pvalue
(Intercept) 40.7560 37.9365 43.5756 0
(Intercept) 40.7560 37.9365 43.5756 0
temperature -0.2216 -0.2579 -0.1853 0
temperature -0.2216 -0.2579 -0.1853 0
free_wine 9.7487 9.1427 10.3547 0
free_wine 9.7487 9.1427 10.3547 0
bill 0.1320 0.1095 0.1545 0

```
```

bill 0.1320 0.1095 0.1545 0

```
```

Basic Concepts
Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Dummy coding with categorical variables

Just use a factor variable, that's all!

```
> ### Categorical variables
> # need to be a factor
> is.factor(free_wine) # not ideal
[1] FALSE
> is.factor(driver) # Good
[1] TRUE
> lm(time~driver)
Call:
lm(formula = time ~ driver)
Coefficients:
    (Intercept) driverDomenico driverLuigi
            35.3128 -5.9964 -1.9338
    driverMario driverSalvatore
    -0.8517 -0.6808
> lm(time~as.factor(driver)) # alternative
```


UMIT

Basic Concepts
Model Formula
Linear Regression
Object Structure
Categorical Variables

Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous categorical-categorical continuous-continuous

Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Change reference category with relevel

```
> lm(time~relevel(driver,ref="Luigi"))
Call:
lm(formula = time ~ relevel(driver, ref = "Luigi"))
Coefficients:
(Intercept) relevel(driver, ref = "Luigi")Bruno
    33.379
                                    1.934
relevel(driver, ref = "Luigi")Domenico
                                    -4.063
relevel(driver, ref = "Luigi")Mario
                                    1.082
relevel(driver, ref = "Luigi")Salvatore
    1.253
```


UMIT

Basic Concepts
Model Formula
Linear Regression Object Structure

Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Categorical Variables - Manual Approach

```
> # Of course, can all be done manually too
> pizza$East <- as.numeric(branch=="East")
> pizza$West <- as.numeric(branch=="West")
> lm(time~East+West, data=pizza)
Call:
lm(formula = time ~ East + West, data = pizza)
Coefficients:
(Intercept) East West
    36.313 -5.246 -1.118
> lm(time~branch) # the same
Call:
lm(formula = time ~ branch)
Coefficients:
(Intercept) branchEast branchWest
    36.313 -5.246 -1.118
```


UMIT

Basic Concepts
Model Formula
Linear Regression
Object Structure
Categorical Variables

Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Output for categorical variable

```
> m3 <- lm(time ~branch)
> summary(m3)
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.3127 0.2957 122.819 < 2e-16 ***
branchEast -5.2461 0.4209 -12.463 < 2e-16 ***
branchWest -1.1182 0.4148 -2.696 0.00711 **
Signif. codes: 0 `***' 0.001 '**' 0.01 '*' 0.05 `'. 0.1
    1
Residual standard error: 6.066 on 1263 degrees of freedom
Multiple R-squared: 0.1199, Adjusted R-squared:
    0.1185
F-statistic: 86.05 on 2 and 1263 DF, p-value: < 2.2e-16
```

UMIT

Basic Concepts
Model Formula
Linear Regression Object Structure

Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression

UMIT

The hypothesis we may have in mind may be

$$
H_{0}: \mu_{\text {East }}=\mu_{\text {West }}=\mu_{\text {Centre }}
$$

which corresponds to

$$
H_{0}: \beta_{\text {East }}=\beta_{\text {West }}=\beta_{\text {Centre }}
$$

in the context of the regression model.

These are two identical hypotheses because in the regression setup, we are essentially comparing three conditional means $E\left(Y \mid X=x_{1}\right)=E\left(Y \mid X=x_{2}\right)=E\left(Y \mid X=x_{3}\right)$.

Basic Concepts
Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression
Additive Models

An ANOVA table summarizes the corresponding F-Test.

ANOVA table

```
```

> anova(m3) \# test categorical variable

```
```

> anova(m3) \# test categorical variable
Analysis of Variance Table
Analysis of Variance Table
Response: time
Response: time
Df Sum Sq Mean Sq F value Pr (>F)
Df Sum Sq Mean Sq F value Pr (>F)
branch 2 6334 3166.8 86.05< 2.2e-16 ***
branch 2 6334 3166.8 86.05< 2.2e-16 ***
Residuals 1263 46481 36.8
Residuals 1263 46481 36.8
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 ''. 0.1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 ''. 0.1
`' 1 `' 1
> anova(lm(time~branch+bill+driver))
> anova(lm(time~branch+bill+driver))
Analysis of Variance Table
Analysis of Variance Table
Response: time
Response: time
Df Sum Sq Mean Sq F value Pr (>F)
Df Sum Sq Mean Sq F value Pr (>F)
branch 2 6334 3166.8 100.2596<2.2e-16 ***
branch 2 6334 3166.8 100.2596<2.2e-16 ***
bill 1 6170 6170.4 195.3505< 2.2e-16 ***
bill 1 6170 6170.4 195.3505< 2.2e-16 ***
driver 4 575 143.7 4.5505 0.001187 **
driver 4 575 143.7 4.5505 0.001187 **
Residuals 1258 39736 31.6
Residuals 1258 39736 31.6
Signif. codes: 0 `***' 0.001 '**' 0.01 `*' 0.05 ''. 0.1

```
Signif. codes: 0 `***' 0.001 '**' 0.01 `*' 0.05 ''. 0.1
```

```
    '' 1
```

```
    '' 1
```


Transformations

```
> lm(temperature~time+time^2) # time^2 omitted
```

Call:
lm(formula $=$ temperature ~ time + time^2)
Coefficients:
(Intercept) time
> lm(temperature~time+I(time^2)) \# correct
Call:
lm(formula $=$ temperature ~ time + I(time^2))
Coefficients:
(Intercept) time I(time^2)
108.93354
-2.32176
0.02753
bum

Basic Concepts

Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding
ANOVA

Transformations

Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Interactions

Introduction to R Michael Schomaker

Use ' \star ' or ':' as part of the model formula:

```
> ### Interactions
> lm(time~ temperature+bill+temperature:bill)
Coefficients:
    (Intercept) temperature
        62.083345 -0.559729
            bill temperature:bill
    -0.264921 0.007026
> lm(time~ temperature*bill) #the same
Coefficients:
    (Intercept) temperature
        62.083345 -0.559729
            bill temperature:bill
    -0.264921 0.007026
```

Basic Concepts
Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding
ANOVA
Transformations

Interactions

categorical-continuous categorical-categorical continuous-continuous

Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Categorical-continuous interaction

```
> # Categorical-Continuous Interaction
> int.m1 <- lm(temperature~ time*branch)
> summary(int.m1)
Call:
lm(formula = temperature ~ time * branch)
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 70.718327 1.850918 38.207 < 2e-16 ***
time -0.288011 0.050342 -5.721 1.32e-08 ***
branchEast 10.941411 2.320682 4.715 2.69e-06 ***
branchWest 1.102597 2.566087 0.430 0.66750
time:branchEast -0.195885 0.066897 -2.928 0.00347 **
time:branchWest 0.004352 0.070844 0.061 0.95103
Signif. codes: 0 '***' 0.001 `**' 0.01 '*' 0.05 '`. 0.1
    '' 1
Residual standard error: 5.951 on 1260 degrees of freedom
Multiple R-squared: 0.2602, Adjusted R-squared:
    0.2573
F-statistic: 88.64 on 5 and 1260 DF, p-value: < 2.2e-16
```

UMIT

Basic Concepts
Model Formula
Linear Regression Object Structure

Categorical Variables
Dummy Coding ANOVA

Transformations
Interactions
categorical-continuous
categorical-categorical continuous-continuous

Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Categorical-continuous interaction (visualization)

UMIT

```
    # Advanced: visualize interaction
c7 <- coefficients(int.m1)
par(mar= c(5, 5, 2, 2))
plot (-c (-5,5), cex=1.75,pch=19,xlim=c (0, 60),ylim=c (40, 90),
    ylab="Temperature (in Degrees Celsius)",xlab="
    Delivery Time (in Minutes)", cex.axis=1.75,cex.lab
    =1.75)
5 abline(a=c7[1],b=c7[2],lwd=3,col="lightgrey",lty=2)
6 abline (a=c7[1]+c7[3],b=c7[2]+c7[5],lwd=3,col="darkgrey",
    lty=1)
7 abline(a=c7[1]+c7[4],b=c7[2]+c7[6],lwd=3,col="black",lty
    =3)
8 legend("topright",col=c("lightgrey","darkgrey","black"),
    legend=c("Centre","East","West"),lwd=3,cex=1.5,lty=c
    (2,1,3))
```

Basic Concepts
Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding ANOVA

Transformations
Interactions
categorical-continuous
categorical-categorical continuous-continuous

Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Categorical-continuous interaction (visualization) II

UMIT

Basic Concepts
Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Categorical-categorical interactions

```
```

> \# categorical-categorical interactions

```
```

> \# categorical-categorical interactions
> summary(lm(time~ branch*operator))
> summary(lm(time~ branch*operator))
Coefficients:
Coefficients:
(Intercept)
(Intercept)
branchEast
branchEast
branchWest
branchWest
operatorMelissa
operatorMelissa
Estimate ... Pr(>|t|)
Estimate ... Pr(>|t|)
36.4203 ... <2e-16 ***
36.4203 ... <2e-16 ***
-5.6685 ... <2e-16 ***
-5.6685 ... <2e-16 ***
-1.3599 ... 0.0205 *
-1.3599 ... 0.0205 *
-0.2178 ... 0.7129
-0.2178 ... 0.7129
branchEast:operatorMelissa 0.8599 ... 0.3076
branchEast:operatorMelissa 0.8599 ... 0.3076
branchWest:operatorMelissa 0.4842 ... 0.5598
branchWest:operatorMelissa 0.4842 ... 0.5598
Signif. codes: 0 '***' 0.001 `**' 0.01 `*' 0.05 '`. 0.1 Signif. codes: 0 '***' 0.001 `**' 0.01 `*' 0.05 '`. 0.1
Signif. codes: 0 `***' 0.001 `**' 0.01 '*' 0.05 ''. 0.1
Signif. codes: 0 `***' 0.001 `**' 0.01 '*' 0.05 ''. 0.1
Residual standard error: 6.07 on 1260 degrees of freedom
Residual standard error: 6.07 on 1260 degrees of freedom
Multiple R-squared: 0.121, Adjusted R-squared:
Multiple R-squared: 0.121, Adjusted R-squared:
0.1175
0.1175
F-statistic: 34.68 on 5 and 1260 DF, p-value: < 2.2e-16
F-statistic: 34.68 on 5 and 1260 DF, p-value: < 2.2e-16

```
```

```
```

UMIT

Basic Concepts
Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous
categorical-categorical continuous-continuous

Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Continuous-continuous interactions

```
> # continuous-continuous interactions
> summary(lm(temperature~bill*time))
Coefficients:
    Estimate ... Pr(>|t|)
(Intercept) 92.555943 ... < 2e-16 ***
bill -0.454381 ... 4.34e-11 ***
time -0.679537 ... 6.31e-15 ***
bill:time 0.008687 ... 1.89e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 ''. 0.1
    '' 1
Residual standard error: 5.948 on 1262 degrees of freedom
Multiple R-squared: 0.26, Adjusted R-squared:
    0.2582
F-statistic: 147.8 on 3 and 1262 DF, p-value: < 2.2e-16
```


UMIT

Basic Concepts

Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding ANOVA

Transformations
Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Basic Diagnostics (I)

```
> # basic checks for linear model
> plot(m1)
Warte auf Bestätigung des Seitenwechsels...
> plot(m1, which=2) # QQ Plot
> plot(m1, which=3) # check heteroskedasticity
> hist(residuals(m1)) # histogram of residuals
```


Basic Concepts
 Model Formula
 Linear Regression
 Object Structure

Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous categorical-categorical continuous-continuous

Diagnostics

Logistic Regression
Poisson Regression
Additive Models

Checking the normality assumption

....using a histogram of the residuals and a QQ-Plot:

UMIT

Basic Concepts
Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous categorical-categorical continuous-continuous

Diagnostics
Logistic Regression
Poisson Regression
Additive Models

Checking heteroskedasticity

Left: good; Right: bad

UMIT

Basic Concepts
Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous categorical-categorical continuous-continuous

Diagnostics

Logistic Regression
Poisson Regression
Additive Models

```
> # logistic model
> m4 <- glm(free_wine~ bill+driver+branch+operator, family=
    "binomial")
> summary(m4)
Coefficients:
\begin{tabular}{lrrrrrl} 
(Intercept) & -2.767954 & 0.423956 & -6.529 & \(6.63 \mathrm{e}-11\) & *** \\
bill & 0.038109 & 0.007785 & 4.895 & \(9.81 \mathrm{e}-07\) & *** \\
driverDomenico & -0.784671 & 0.456808 & -1.718 & 0.0858 &. \\
driverLuigi & -0.560532 & 0.297897 & -1.882 & 0.0599 & . \\
driverMario & -0.260552 & 0.198818 & -1.311 & 0.1900 & \\
driverSalvatore & -0.128486 & 0.193854 & -0.663 & 0.5075 & \\
branchEast & -0.922879 & 0.223016 & -4.138 & \(3.50 e-05\) & *** \\
branchWest & -0.250446 & 0.167768 & -1.493 & 0.1355 & \\
operatorMelissa & 0.133901 & 0.152685 & 0.877 & 0.3805
\end{tabular}
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1197.0 on 1265 degrees of freedom Residual deviance: 1110.9 on 1257 degrees of freedom AIC: 1128.9
```


UMIT

Basic Concepts
Model Formula
Linear Regression Object Structure

Categorical Variables
Dummy Coding ANOVA

Transformations
Interactions
categorical-continuous
categorical-categorical continuous-continuous

Logistic Regression
Poisson Regression

```
> # we need to exponentiate for odds ratio
> # a bit tiring....
> exp(coefficients(m4)) # odds ratio
(Intercept) bill driverDomenico
0.06279032
    1.03884477 0.45626962
driverLuigi driverMario driverSalvatore
    0.57090543 0.77062641 0.87942630
branchEast branchWest operatorMelissa
0.39737349 0.77845374 1.14327965
> exp(confint(m4)) # CI for odds ratio
Waiting for profiling to be done...
                    2.5 % 97.5 %
(Intercept) 0.02707064 0.1428350
bill 1.02322261 1.0549563
driverDomenico 0.16859386 1.0415925
driverLuigi 0.31015996 1.0033954
driverMario 0.52093635 1.1369852
driverSalvatore 0.60087101 1.2859950
branchEast 0.25391033 0.6099795
branchWest 0.55959821 1.0808840
operatorMelissa 0.84773115 1.5432353
```

UMIT

Basic Concepts

Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding ANOVA

Transformations
Interactions
categorical-continuous
categorical-categorical continuous-continuous

Diagnostics

Logistic Regression
Poisson Regression
Additive Models

Poisson regression with family="poisson"

UMIT

m_

```
```


Poisson model for count data or risk ratio scale

```
# Poisson model for count data or risk ratio scale
```


Poisson model for count data or risk ratio scale

m5 <- glm(free_wine ~bill+driver+branch+operator, family="
m5 <- glm(free_wine ~bill+driver+branch+operator, family="
m5 <- glm(free_wine ~bill+driver+branch+operator, family="
poisson")
poisson")
poisson")
3 m6 <- glm(pizzas ~bill+driver+branch+operator, family="
3 m6 <- glm(pizzas ~bill+driver+branch+operator, family="
3 m6 <- glm(pizzas ~bill+driver+branch+operator, family="
poisson")
poisson")
poisson")
summary (m5)
summary (m5)
summary (m5)
summary (m6)

```
    summary (m6)
```

 summary (m6)
    ```

\section*{Additive models with penalized splines (I)}

\section*{UMIT}


\section*{Basic Concepts \\ Model Formula \\ Linear Regression Object Structure}

Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression

\section*{Additive models with penalized splines (II)}

\section*{UMIT}

Basic Concepts
Model Formula
Linear Regression
Object Structure
Categorical Variables
Dummy Coding
ANOVA
Transformations
Interactions
categorical-continuous
categorical-categorical
continuous-continuous
Diagnostics
Logistic Regression
Poisson Regression```

