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ABSTRACT
Targeted maximum likelihood estimation (TMLE) is an increasingly popular framework for the estimation of causal effects.
It requires modeling both the exposure and outcome but is doubly robust in the sense that it is valid if at least one
of these models is correctly specified. In addition, TMLE allows for flexible modeling of both the exposure and out-
come with machine learning methods. This provides better control for measured confounders since the model specifica-
tion automatically adapts to the data, instead of needing to be specified by the analyst a priori. Despite these method-
ological advantages, TMLE remains less popular than alternatives in part because of its less accessible theory and imple-
mentation. While some tutorials have been proposed, none address the case of a time-to-event outcome. This tutorial pro-
vides a detailed step-by-step explanation of the implementation of TMLE for estimating the effect of a point binary or
multilevel exposure on a time-to-event outcome, modeled as counterfactual survival curves and causal hazard ratios. The
tutorial also provides guidelines on how best to use TMLE in practice, including aspects related to study design, choice
of covariates, controlling biases and use of machine learning. R-code is provided to illustrate each step using simulated

Abbreviation: TMLE, targeted maximum likelihood estimation.
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data (https://github.com/detal9/SurvTMLE). To facilitate implementation, a general R function implementing TMLE with
options to use machine learning is also provided. The method is illustrated in a real-data analysis concerning the effective-
ness of statins for the prevention of a first cardiovascular disease among older adults in Québec, Canada, between 2013
and 2018.

1 | Introduction

Much of pharmacoepidemiological research is concerned with
exposure (or treatment) effect estimation using observational
data. When there are systematic differences in outcome predic-
tive characteristics between exposure groups, adequate control
for confounding bias is paramount. Traditional survival analysis
modeling, such as Cox proportional hazards models, can model
the effect of a point-exposure on a time-to-event outcome, condi-
tional on confounding variables. More recently, causal inference
methods for survival analysis have allowed for counterfactual def-
initions of causal effects, independent of a true or working out-
come model. These causal parameters can be estimated by any
number of methods. For example, the popular inverse probabil-
ity of treatment weighting (IPTW) can both adjust for exposure
group confounders through propensity scores while simultane-
ously allowing for adjustment of longitudinal missing-at-random
censoring. However, limitations of IPTW, such as subopti-
mal efficiency and instability, have led to the development of
more robust approaches to the estimation of causal inference
parameters.

One such approach is targeted maximum likelihood estima-
tion (TMLE) [1], an estimation framework for efficient esti-
mation that can readily incorporate machine learning. TMLE
involves first specifying an initial substitution estimator and then
updating it such that the resulting estimator is efficient. Typ-
ically, the initial estimator is based on an outcome regression
model and the updating step uses information from a propen-
sity score model. Because of its theoretical advantages, TMLE is
becoming an increasingly popular analytical approach in phar-
macoepidemiology [2]. Multiple simulation studies have been
published comparing the empirical performance of TMLE with
alternatives under various scenarios [3–11]. Overall, these simu-
lations showcase the potential benefits of using TMLE to protect
against model misspecification bias, especially when combined
with machine learning algorithms. However, TMLE remains less
frequently used in applied research than simpler alternatives.
Some tutorials have been produced to provide intuition on the
functioning of TMLE and detail its implementation focusing on
the case of a single exposure on a continuous or binary out-
come [7, 12–15]. However, none of the existing tutorials address
the case of a time-to-event outcome, which is ubiquitous in
pharmacoepidemiology.

The objective of this article is to provide a detailed step-by-step
tutorial on how to estimate the effect of a binary or multilevel
exposure measured at a single time point on a time-to-event
outcome using TMLE. As will be seen, there are several par-
ticularities to this context of application. We begin in Section 2
by describing the challenges and advantages of traditional (Cox
proportional hazards model) and causal (IPTW, g-computation,
and TMLE) methods. Section 3 gives a motivating example and

introduces some notation. Section 4 provides a step-by-step tuto-
rial on how to implement TMLE using simulated data with-
out the recourse of an off-the-shelf software function or pack-
age. The objective is to provide the reader with the intuition
on how the TMLE algorithm proceeds to produce estimates and
confidence intervals. Section 5 provides tips and guidelines on
how best to implement TMLE with a time-to-event outcome.
We notably address topics such as designs and research ques-
tions for which TMLE is appropriate, the choice of the covari-
ates to include and the specification of the exposure and out-
come models. We then illustrate the method in a real-data
application concerning the effectiveness of statins for the pre-
vention of a first cardiovascular event among older adults in
Section 6. This illustration makes use of an R function that we
have developed to simplify the implementation of TMLE for
survival analysis. We conclude in Section 7 with a discussion
summarizing the main strengths and limitations of TMLE and
suggestions on further readings concerning more advanced
related topics.

2 | Background

Various methods can be used to estimate the effect of a point
exposure while controlling for confounding. When the outcome
is a time-to-event variable, the most common option is to include
measured confounders as covariates in a Cox proportional haz-
ards model. To control for confounding appropriately, this model
must be adequately specified. This means that the relationship
between the included variables and the outcome’s hazard must
be correctly modeled. For example, if there are non-linear asso-
ciations or interactions between covariates, exposure and time,
they must be modeled. Adequately specifying the Cox model
can be a challenging task, and exposure-confounder interaction
terms, while perhaps necessary for appropriate control of con-
founding, may pose difficulties for interpretation. In addition,
hazard ratios inherently suffer from selection bias [16], and thus
lack a causal interpretation except under very stringent and unre-
alistic assumptions [17, 18]. Intuitively, when exposure has an
effect on the outcome, people who are more susceptible to the
event will have the event sooner in the exposure group that is
the most at risk. This differential depletion of susceptible people
between groups tends to make the hazard ratio vary in time, even
when the exposure effect remains constant [16]. One solution to
mitigate this issue is to report adjusted survival curves in addi-
tion to hazard ratios [16]. Another challenge with the Cox model
is the non-collapsibility of hazard ratios, which means that the
exposure hazard ratio varies according to the variables that are
included in the Cox model, even if those variables are not con-
founders [19]. Finally, the Cox model assumes independent cen-
soring, which precludes the existence of any post-exposure fac-
tor that affects both the time-to-event and the time-to-censoring
mechanisms.
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TABLE 1 | Summary of approaches for estimating the effect of an exposure on a time-to-event outcome.

Outcome Exposure Censoring Censoring Requires correct Machine learning
Method modeling modeling modeling assumption specification of

Cox model ✓ Independent All models Not applicable
G-computation using iterated ✓ MAR All models Affects inference
conditional expectations
Inverse probability of treatment ✓ ✓ MAR All models Affects inference
and censoring weighting
Targeted maximum likelihood ✓ ✓ ✓ MAR Exposure + censoring or Can be used without

outcome affecting inference or
interpretation

The g-computation formula (or g-formula), which is a general-
ization of the common standardization formula, can also be used
to adjust for covariates in survival analysis in order to estimate
causal hazard ratios or survival curves. Several ways of imple-
menting the g-formula are available [20, 21]. A common imple-
mentation uses iterated conditional expectations and involves
specifying a series of models for the outcome probability at dif-
ferent time-points as a function of previous covariates and expo-
sure. Unlike the covariate-adjusted Cox model, g-computation
can adjust for missing-at-random (MAR) censoring. This permits
for censoring to depend on post-exposure covariates. However,
g-computation requires that all involved models are correctly
specified.

Another alternative to the covariate-adjusted Cox model are
propensity score methods, such as propensity score matching
or IPTW [22–24]. The exposure hazard ratio or survival curves
can be estimated in the matched/weighted data, without fur-
ther adjustment for covariates under the independent censor-
ing assumption [24]. These methods can further be combined
with inverse probability of censoring weighting to avoid the
independent censoring assumption, instead requiring MAR cen-
soring [25]. Propensity score methods require modeling the
exposure according to measured confounders, which is often
accomplished using a logistic regression model. In order to
control appropriately for confounding, these methods require
the correct specification of this exposure model. Unlike the
covariate-adjusted Cox model approach, using a complex model
specification does not hinder interpretation when using propen-
sity score methods. As such, using machine learning methods to
flexibly specify the exposure model in a data-adaptive manner
may seem like an attractive option [26–29]. However, propen-
sity score methods can yield biased estimates with high variance
when near-positivity violation problems occur [30]. Informally,
near-positivity violations mean that the probability of receiving or
not receiving treatment is close to one for some individuals given
their covariates. Using machine learning methods for modeling
the exposure has been found to aggravate these positivity prob-
lems in some simulation studies [10, 31]. There are also other
challenges related to using machine learning methods for mod-
eling the exposure—or for modeling the outcome—such as the
suboptimal convergence rate of estimators (i.e., there are estima-
tors whose variance decreases faster with increasing sample size)
and the inability to construct valid confidence intervals [32]. In
contrast, the Cox model and g-computation can be less sensitive
to near-positivity violations than inverse probability weighting

because of their ability to extrapolate over sparse regions of the
data [33].

Finally, one may consider methods that combine both outcome
modeling and exposure modeling, such as augmented IPTW [34],
doubly-robust standardization [21], or TMLE [35]. One advan-
tage of these methods is that they are doubly robust approaches;
that is, they produce valid estimates if at least one of either the
exposure or outcome model is correctly specified. As such, they
give two chances to correctly specify a model and obtain valid
results, instead of one as in traditional approaches. In addition,
these doubly robust methods (combined with a cross-validation
or cross-fitting procedure) formally allow for flexible modeling of
both the exposure and outcome with machine learning methods,
limiting the risk of model misspecification and thus residual
confounding [32, 36, 37]. In TMLE, this is achieved without
limiting ease of interpretation or theoretical properties of the
estimator. Some simulation studies have also found that TMLE
performs well under near-positivity violations, even when used
together with machine learning [3, 5, 10], although inference
under near-positivity violations is challenging [38, 39]. It is also
possible to control for post-exposure factors that affect both the
time-to-event and censoring mechanisms, thus alleviating the
independent censoring assumption. TMLE can be used to quan-
tify the causal effect of an exposure on a time-to-event outcome
in various ways, including adjusted survival curves and marginal
hazard ratios [35, 40].

Table 1 summarizes the comparison between the various types
of approaches for estimating the effect of an exposure on a
time-to-event outcome.

3 | Motivational Example and Notation

As a motivational example, we consider the estimation of the
effect of statin treatment persistence for at least three months
after initiation on a first cardiovascular event among adults aged
66 years or older. To facilitate replication, we consider simu-
lated data for the tutorial presented in Section 4 and only con-
sider real data in the application in Section 6. We will denote by
𝐴 the exposure, where 𝐴 = 1 represents statin persistence and
𝐴 = 0 represents non-persistence. While we consider the case of
a binary exposure in this example, multilevel categorical expo-
sures are readily accommodated by the procedure we present.
The outcome of interest is the time between statin initiation and
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the occurrence of a first cardiovascular event or death from any
cause, 𝑇 . Considering the potential outcome framework [41], we
denote by 𝑇 𝑎 the time to the event of interest that would have
been observed had subjects been assigned to the exposure level
𝑎. Using this notation, we aim to quantify the causal effect of
statin persistence by estimating the counterfactual survival curve,
the average treatment effect at time 𝑡 and the parameters of a
marginal structural model (MSM), which are, respectively

𝑆𝑎(𝑡) = 𝑃 (𝑇 𝑎 > 𝑡) (1)

𝐴𝑇𝐸(𝑡) = 𝑆1(𝑡) − 𝑆0(𝑡) (2)

logit[𝜆𝑎(𝑡)] = 𝑋⊤𝑎,𝑡𝛾 (3)

where the counterfactual hazard is defined as

𝜆𝑎(𝑡) = lim
Δ𝑡→0
𝑃 (𝑡 ≤ 𝑇 𝑎 < 𝑡 + Δ𝑡|𝑇 𝑎 ≥ 𝑡)∕Δ𝑡 (4)

and where 𝑋⊤𝑎,𝑡 is a row-vector comprised of terms for the expo-
sure 𝑎 and time 𝑡. For example, 𝑋⊤𝑎,𝑡 could be (1, 𝑎, 𝑡, 𝑎 × 𝑡) if
the MSM of interest is logit[𝜆𝑎(𝑡)] = 𝛾0 + 𝛾1𝑎 + 𝛾2𝑡 + 𝛾3𝑎 × 𝑡. The
counterfactual survival curve 𝑆𝑎(𝑡) represents the proportion of
people in the population of interest who would have remained
event-free at time 𝑡 had everyone received exposure level 𝐴 = 𝑎.
The average treatment effect at time 𝑡 is the difference between
the proportion of event-free individuals at time 𝑡 had everyone
been exposed (𝐴 = 1) and had no one been exposed (𝐴 = 0).
Finally, the counterfactual hazard 𝜆𝑎(𝑡) represents the incidence
rate of the event at time 𝑡 in a hypothetical population where the
exposure would be 𝐴 = 𝑎 for everyone. Note that if the hazard
is relatively close to 0 (for example 𝜆𝑎(𝑡) < 0.1), then exp(𝛾) in
the MSM can be interpreted as a hazard ratio. Otherwise, exp(𝛾)
should be interpreted as an odds ratio. We also note that it can
seem incorrect to model a hazard using a logit link since it is
not a probability. However, as will be seen shortly, the follow-up
time will be discretized in practice and the hazard will thus be
expressed as a (conditional) probability.

To estimate these quantities using the TMLE framework pre-
sented in this tutorial, the period of follow-up must first be
divided (discretized) into several relatively short sub-periods of
time (guidelines on how to perform this step are available in
Section 5.3). Note that alternative TMLE algorithms that do not
require discretizing follow-up time have recently been intro-
duced [42–44]. We will denote by 𝑡 = 1, . . . , 𝐾 these time peri-
ods. As will be seen in Section 6, each individual is followed up
to a maximum of two years after their statin initiation in our
example. We could then, for example, divide the follow-up period
in sub-periods of two months each, thus having 𝑡 = 1, . . . , 12
periods of follow-up. For each sub-period, 𝑌𝑡 = 1 denotes that
the event of interest has occurred at time 𝑡 or before time 𝑡 and
𝑌𝑡 = 0 indicates that the event has not yet occurred at time 𝑡
(as such, whenever 𝑌𝑡 = 1, then 𝑌𝑡′ = 1 for all 𝑡′ > 𝑡). A com-
mon feature of time-to-event outcomes is censoring, where the
follow-up of an individual ceases before the occurrence of the
event. In our example, censoring can be due to loss to follow-up
(people exiting the study) or administrative end of follow-up
(end of the study period). Using notation similar to the one we
used for the outcome, we will denote by 𝐶𝑡 = 1 censoring at

FIGURE 1 | Directed acyclic graph representing the assumed causal
structure of the data.

or before time 𝑡 and 𝐶𝑡 = 0 the absence of censoring (that is,
the individual is still under follow-up at time 𝑡). Once the indi-
vidual is censored, their event indicator becomes missing, that
is, if 𝐶𝑡 = 1, then 𝑌𝑡, . . . , 𝑌𝐾 are missing. We denote by 𝑳𝑡 the
covariates measured at time 𝑡, where we use 𝓵𝑡 to represent a
corresponding data realization. In our example, these notably
include age, sex, diabetes, and other risk factors of cardiovas-
cular events. Finally, we denote by 𝑖 = 1, . . . , 𝑛 the individuals
that are part of the study. These subjects are assumed to be inde-
pendently sampled from a given population. Figure 1 represents
the assumed causal structure of the data using a directed acyclic
graph in an example with 𝐾 = 2 time points for ease of repre-
sentation. Note the assumed temporal ordering of the variables:
{𝑳1, 𝐴, 𝐶1, 𝑌1,𝑳2, 𝐶2, 𝑌2, . . . ,𝑳𝐾, 𝐶𝐾, 𝑌𝐾}. Notably, we allow for
censoring between the exposure at baseline and the first outcome
measurement at 𝑡 = 1. Alternative temporal orderings could be
considered, which would require slight alterations to the imple-
mentation presented herein.

Identification of the causal exposure effect on the time-to-event
outcome using observational data requires a few causal assump-
tions. These assumptions are not specific to TMLE; most esti-
mators of such a causal effect require the same, or very sim-
ilar, assumptions. First, there must be no unmeasured con-
founders, that is, the conditional exchangeability assumption;
intuitively, there should be no unmeasured variable that affects
both the exposure and the outcome, or the censoring and the
outcome. To express this assumption more formally, we denote
by 𝑌 𝑎,𝐶𝑡=0
𝑡 the outcome indicator that would have been observed

at time point 𝑡 under exposure 𝐴 = 𝑎 and under no censor-
ing. This assumption is then expressed as 𝑌 𝑎,𝐶𝑡=0

𝑡 ⊥⊥ 𝐴|𝑳1 and
𝑌
𝑎,𝐶𝑡=0
𝑡 ⊥⊥ 𝐶𝑘|𝐴,𝑳𝑘, 𝐶𝑘−1 = 0 for all 𝑡 and 𝑘 ≤ 𝑡, where denotes

statistical independence and 𝑳𝑡 = (𝑳1,𝑳2, . . . ,𝑳𝑡) is the history
of the covariates up to time point 𝑡. A consistency assumption
is also required. This assumption entails that the observed out-
come at time point 𝑡 of a given uncensored subject corresponds
to the counterfactual outcome that would have been observed
had the subject been assigned to their observed exposure, that is,
𝐴 = 𝑎 and 𝐶𝑡 = 0 ⇒ 𝑌𝑡 = 𝑌

𝑎,𝐶𝑡=0
𝑡 . Consistency could be violated

if there are multiple versions of each exposure level [45]. A third
assumption is the absence of interference, which means that the
exposure of one subject does not affect the outcome of others.
Finally, we must make positivity assumptions relative to the expo-
sure and the censoring. For exposure, this requires that exposure
assignment is not fully deterministic conditional on the observed
baseline covariates 𝑳1, that is, 0 < 𝑃 (𝐴 = 1|𝑳1 = 𝓵1) < 1 for all
possible 𝓵1. In other words, for all levels of the covariates’ pos-
sible values, there should both be exposed and unexposed sub-
jects in the population. For censoring, this requires that there
are some uncensored individuals in the population at all time
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points in all strata of the previous covariates and exposure, that
is, 𝑃 (𝐶𝑡 = 0|𝐴 = 𝑎,𝑳𝑡 = 𝓵𝑡) > 0, for all possible (𝑎,𝓵𝑡).

3.1 | Data Simulation

We now describe how we generated both counterfactual and
observed simulated data compatible with a simplification of the
general data structure given previously. The data were generated
such that the previous causal assumptions are met. To simplify
the illustration, we only consider 𝐾 = 4 time points and a sin-
gle baseline covariate 𝐿. First we generated the covariate 𝐿 as
a binary variable with 𝑃 (𝐿 = 1) = 0.5. Then the binary expo-
sure variable 𝐴 was generated as a function of 𝐿 with 𝑃 (𝐴 =
1|𝐿) = expit(−3 + 0.6𝐿) where expit(x) = exp(𝑥)∕[1 + exp(𝑥)] is
the inverse of the logit link function. We then generated the
counterfactual probability of the event under exposure and under
absence of exposure respectively at each time point 𝑡 using the
following equations

𝑃 (𝑌 1
𝑡 = 1|𝑌 1

𝑡−1 = 0, 𝐿) = expit(−2 − 1 + 0.25𝐿)

𝑃 (𝑌 0
𝑡 = 1|𝑌 0

𝑡−1 = 0, 𝐿) = expit(−2 + 0 + 0.25𝐿)

For individuals that had already experienced the event at a
previous time point, the event indicator remained fixed at 1

(𝑌 𝑎𝑡 = 1 if 𝑌 𝑎𝑡−1 = 1). The observed outcome at each time point
corresponded to the counterfactual outcome under the observed
exposure (if 𝐴 = 1 then 𝑌𝑡 = 𝑌 1

𝑡 , otherwise 𝑌𝑡 = 𝑌 0
𝑡 ). The censor-

ing indicator at each time point was generated as a function of 𝐴
and 𝐿 as 𝑃 (𝐶𝑡 = 1|𝐶𝑡−1 = 0, 𝐴, 𝐿, 𝑌𝑡−1 = 0) = expit(−5 + 0.2𝐴 +
0.2𝐿). Again, individuals that had been censored at a previous
time point remained censored (𝐶𝑡 = 1 if 𝐶𝑡−1 = 1) and all future
event indicators were set to missing. R code for generating the
data is available in Box 1.

To determine the true causal effect, we generated 5 000 000 coun-
terfactual observations and directly calculated the counterfac-
tual survival probabilities in Equation (1) and found (rounding
at the second decimal place) 𝑆1(1) = 0.95, 𝑆1(2) = 0.90, 𝑆1(3) =
0.85, 𝑆1(4) = 0.80, 𝑆0(1) = 0.87, 𝑆0(2) = 0.75, 𝑆0(3) = 0.65 and
𝑆0(4) = 0.56. Because the event can only occur at discrete time
points in this simulated example, note that

𝜆𝑎(𝑡) = 𝑃 (𝑇 𝑎 = 𝑡|𝑇 𝑎 ≥ 𝑡) = 𝑆𝑎(𝑡 − 1) − 𝑆𝑎(𝑡)
𝑆𝑎(𝑡 − 1)

(5)

Using Equation (5), we computed the counterfactual hazards,
for example 𝜆1(3) = [𝑆1(2) − 𝑆1(3)]∕𝑆1(2) = [0.90 − 0.85]∕0.85.
The next step was to choose a working MSM relating these haz-
ards to exposure and time. We chose the MSM logit[𝜆𝑎(𝑡)] =

Box 1 | Function to generate the data.

generateData <- function(n){
expit <- plogis;

## Generate baseline data
L <- rbinom(n, size = 1, prob = 0.5);
A <- rbinom(n, size = 1, prob = plogis(-3 + 0.6*L));

## Generate counterfactual outcome
# time 1
py1.1 <- expit(-2 - 1 + 0.25*L);
py1.0 <- expit(-2 + 0 + 0.25*L);
Y1.1 <- rbinom(n, 1, py1.1);
Y1.0 <- rbinom(n, 1, py1.0);

# time 2
Y2.1 <- Y2.0 <- rep(1, n);
py2.1 <- expit(-2 - 1 + 0.25*L)[Y1.1 == 0];
py2.0 <- expit(-2 + 0 + 0.25*L)[Y1.0 == 0];
Y2.1[Y1.1 == 0] <- rbinom(n = length(py2.1), 1, py2.1);
Y2.0[Y1.0 == 0] <- rbinom(n = length(py2.0), 1, py2.0);
...

## Generate censoring and observed outcome
# time 1
Y1 <- Y1.1*A + Y1.0*(1 - A);
censor.prob1 <- expit(-5 + 0.2*A + 0.2*L);
Censor1 <- rbinom(n, 1, censor.prob1);

# time 2
Censor2 <- rep(1, n);
censor.prob2 <- expit(-5 + 0.2*A + 0.2*L)[Censor1 == 0 & Y1 == 0];
Censor2[Censor1 == 0 & Y1 == 0] <- rbinom(n = length(censor.prob2), 1, censor.prob2);
Y2 <- Y2.1*A + Y2.0*(1 - A);
...

## The observed outcome is missing if censored
Y1[Censor1==1] <- NA; Y2[Censor2==1] <- NA; Y3[Censor3==1] <- NA; Y4[Censor4==1] <- NA;

## Once an event occurred, future Y = 1
Y2[Y1 == 1] <- 1; Y3[Y2 == 1] <- 1; Y4[Y3 == 1] <- 1;

## return counterfactual and observed data
data.frame(id = 1:n, L, A, Censor1, Censor2, Censor3, Censor4, Y1, Y2, Y3, Y4, Y1.1, Y2.1, Y3.1,

Y4.1, Y1.0, Y2.0, Y3.0, Y4.0);
}
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𝛾0 + 𝛾1𝑎 + 𝛾2𝐼(𝑡 = 2) + 𝛾3𝐼(𝑡 = 3) + 𝛾4𝐼(𝑡 = 4), where 𝐼(⋅) is the
usual indicator function that takes the value 1 when its argu-
ment is true and 0 otherwise. Following Schnitzer et al. (2014)
[35], the parameters of this MSM were determined by fit-
ting a weighted logistic regression of the counterfactual haz-
ards (𝜆𝑎(𝑡)) as the dependent variable on exposure and time as
independent variables, with weights equal to 𝑆𝑎(𝑡 − 1). Recall
from Equation (5) that the hazards are conditional probabili-
ties when time has been discretized, thus supporting the use
of a logistic regression. We obtained the following parameters:
𝛾0 = −1.87, 𝛾1 = −1.00, 𝛾2 = 𝛾3 = 𝛾4 = −0.01. In this example,
only 𝛾1 has a causal interpretation, since it is the only param-
eter related to the exposure. The other parameters account for
the fact that the hazard may vary in time, though the expo-
sure effect is constant over time. These other parameters will
not be interpreted. Note that some hazards are not sufficiently
close to 0 for exp(𝛾1) to be interpreted as the exposure haz-
ard ratio. Instead, exp(𝛾1) should be interpreted as the exposure
odds ratio.

In this simple example, the independent censoring assumption
is met, since there are no post-exposure variables affecting both
the outcome and censoring indicators. However, the steps we
describe in the tutorial below allow for such post-exposure vari-
ables to exist.

4 | Tutorial

Before moving to the step-by-step tutorial on how to use TMLE
to estimate our causal quantities of interest (also called the tar-
get parameters), we first provide a brief overview of the general
TMLE framework. TMLE first requires constructing and fitting
a model for the outcome according to the exposure and con-
founders. The output of this outcome model fit can then be used
to obtain a first estimate of the causal quantities of interest. In
general, this is achieved by calculating the predicted value of
the outcome under exposure and under no exposure for all indi-
viduals, in order to estimate the corresponding counterfactual
outcome expectations. However, these estimates rely on the cor-
rect specification of the outcome model to be valid. In a second
step, TMLE requires modeling the exposure according to the con-
founders. The information of this exposure model is then used
to compute a weight that is used to update the initial estimate.
The intuition is as follows: If the outcome model was correctly
specified, then the exposure model should not provide any addi-
tional information for predicting the observed outcome beyond
the initial outcome model. Indeed, both the outcome and the
exposure models adjust for the same covariates. Because the same
data cannot provide new information, the exposure model’s pre-
dictions should be independent of the outcome model’s errors.
However, if the initial outcome model is incorrectly specified,
then the exposure model predictions may improve the initial
outcome model fit. As such, it provides a second occasion for
correctly modeling the relation between the outcome and expo-
sure and covariates. This is why TMLE benefits from the dou-
ble robustness property we mentioned in the introduction. More
technically, TMLE is constructed in such a way that the final
estimator solves the estimating equations of the efficient influ-
ence curve of the target parameter. The influence curve of an

estimator can be conceptualized as its core component, which
determines its large-sample (asymptotic) properties. The efficient
influence curve is optimal for a given target parameter in the
sense that an estimator that solves the corresponding estimat-
ing equations has the lowest possible asymptotic variance for
the target parameter in its class of estimators, assuming that
the outcome and exposure models were correctly specified (local
efficiency). The variance of a TMLE estimator can be estimated
by computing the sample variance of the empirical version of
the efficient influence curve, scaled by a factor 1∕𝑛. A more
detailed presentation of the TMLE framework can be found else-
where [1, 37]. Note that the updating step was traditionally per-
formed using a “clever covariate”, corresponding to the IPTW,
which was included as the sole covariate in an (unweighted)
intercept-free regression model for the observed outcome and
with an offset equal to the initial predicted outcome (appro-
priately scaled). The weighted-regression approach we instead
describe has been observed to have better finite-sample perfor-
mance [8].

We now provide a detailed, step-by-step tutorial on how to imple-
ment TMLE to estimate the counterfactual survival curves and
the MSM for the outcome hazard in the simple simulation with
observed data structure 𝑂 = (𝐿,𝐴, 𝐶1, 𝑌1, 𝐶2, 𝑌2, 𝐶3, 𝑌3, 𝐶4, 𝑌4).
We provide R code for each step. As will be seen, there are
some important and particular aspects of implementing TMLE
when modeling a censored time-to-event outcome. First, for the
algorithm we present, the event indicator at each time point must
be modeled. Moreover, the censoring mechanism must also be
modeled. The algorithm also requires recursive operations to esti-
mate the survival probabilities at later time points. As mentioned
previously, the tutorial makes use of simulated data to increase
replicability. These data were obtained by generating 𝑛 = 5000
observations using the function in Box 1 setting the seed for the
random number generator to 1234 and discarding the counterfac-
tual outcomes.

4.1 | Estimating 𝑺𝒂(1)

We begin by estimating the counterfactual survival probability at
the first time point. The R code associated with the steps below is
provided in Box 2.

4.1.1 | Step 1—Modeling the Outcome at the First
Time Point

In order to obtain initial estimates of 𝑆1(1) and 𝑆0(1), we first
model the event indicator at the first time point (𝑌1) as a function
of exposure 𝐴 and baseline covariate 𝐿 among individuals who
were uncensored at the first time point (𝐶1 = 0). We correspond-
ingly define the conditional event probability 𝑄𝐴(1, 𝐿) = 𝑃 (𝑌1 =
1|𝐴,𝐿, 𝐶1 = 0). In this example, we used the logistic regression
model logit[𝑄𝐴(1, 𝐿)] = 𝛽0 + 𝛽1𝐴 + 𝛽2𝐿 to simplify the illustra-
tion, but using machine learning algorithms would be prefer-
able to avoid assuming a parametric model. The use of machine
learning within TMLE is further discussed in Section 5.4. Next
𝑆𝑎(1) = 𝑃 (𝑌 𝑎1 = 0) = 1 − 𝑃 (𝑌 𝑎1 = 1) can be estimated by comput-
ing one minus the average of the model’s predicted values over

6 of 18 Statistics in Medicine, 2025
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Box 2 | R code for estimating Sa(1).

n <- 5 000;
ObsData <- generateData(n);

## Step 1 -- Outcome model
modQ1 <- glm(Y1 ∼A + L,

data = subset(ObsData, Censor1 == 0),
family = "binomial");

newdat1 <- newdat0 <- ObsData;
newdat1$A <- 1;
newdat0$A <- 0;
Q1_1 <- predict(modQ1, newdata = newdat1, type = "response");
Q1_0 <- predict(modQ1, newdata = newdat0, type = "response");

## Step 2 -- Exposure and censoring models
gA <- glm(A ∼L, family = "binomial", data = ObsData)$fitted;
gC1 <- glm(Censor1 ∼A + L, family = "binomial", data = ObsData)$fitted;

## Step 3 -- Updating the initial estimate
# Computing inverse probability weight
ObsData$H1_1 <- (ObsData$A == 1 & ObsData$Censor1 == 0)*(1/(gA*(1 - gC1)));
ObsData$H1_0 <- (ObsData$A == 0 & ObsData$Censor1 == 0)*(1/((1 - gA)*(1 - gC1)));

# Estimating the update coefficient
mod.update1_1 <- glm(Y1 ∼1 + offset(qlogis(Q1_1)),

weight = H1_1, family = "binomial",
data = ObsData);

mod.update1_0 <- glm(Y1 ∼1 + offset(qlogis(Q1_0)),
weight = H1_0, family = "binomial",
data = ObsData);

# Performing the update
Q1_1.star <- plogis(qlogis(Q1_1) + coef(mod.update1_1));
Q1_0.star <- plogis(qlogis(Q1_0) + coef(mod.update1_0));
S1_1.star <- 1 - mean(Q1_1.star); S1_0.star <- 1 - mean(Q1_0.star);

## Step 4 -- Estimate the variance
d1_1 <- with(ObsData, H1_1*(Q1_1.star - Y1));
d1_0 <- with(ObsData, H1_0*(Q1_0.star - Y1));
d1_1[ObsData$H1_{1} == 0] = 0; # To deal with NAs in Y1
d1_{0}[ObsData$H1_0 == 0] = 0; # To deal with NAs in Y1
IC1_1 <- d1_1 + S1_1.star - Q1_1.star;
IC1_0 <- d1_0 + S1_0.star - Q1_0.star;
VarS1_1 <- var(IC1_1)/n;
VarS1_0 <- var(IC1_0)/n;
VarATE1 <- var(IC1_1 - IC1_0)/n;

## Estimates and 95
S1_1.star + c(-1.96, 1.96)*sqrt(VarS1_1);
S1_0.star + c(-1.96, 1.96)*sqrt(VarS1_0);
ATE1 = S1_1.star - S1_0.star;
c(ATE1, ATE1 - 1.96*sqrt(VarATE1), ATE1 + 1.96*sqrt(VarATE1));

all subjects (censored or uncensored), fixing the exposure level to
𝐴 = 𝑎. For example,

𝑆̂1(1) = 1 − 1
𝑛

𝑛∑
𝑖=1
𝑃 (𝑌1 = 1|𝐴 = 1, 𝐿 = 𝓁𝑖)

= 1 − 1
𝑛

𝑛∑
𝑖=1

expit(𝛽0 + 𝛽1 + 𝛽2𝓁𝑖)

Intuitively, this step can be seen as predicting what would have
been the probability of not having an event at the first time
point for all individuals, had they been exposed and uncen-
sored, possibly contrary to the fact. In addition to the causal
assumptions laid out previously, this estimator also requires
the correct specification of the outcome (event) model at the
first time point to be valid. For convenience, we will denote
by 𝑄̂𝑎(1,𝓁𝑖) = 𝑃 (𝑌1 = 1|𝐴 = 𝑎, 𝐿 = 𝓁𝑖) the individual predicted
event probabilities.

4.1.2 | Step 2—Modeling the Exposure 𝑨

and Censoring 𝑪1 at the First Time Point

As a preparatory step for updating the initial estimate we
obtained in step 1, we need to model the exposure conditional
on baseline covariates and censoring at the first time point
conditional on exposure and baseline covariates. Again, while
using machine learning algorithms would be preferable, we used
the logistic regression models logit[𝑃 (𝐴 = 1|𝐿)] = 𝛼0 + 𝛼1𝐿 and
logit[𝑃 (𝐶1 = 1|𝐴,𝐿)] = 𝛿0 + 𝛿1𝐴 + 𝛿2𝐿 in this example to sim-
plify the illustration.

4.1.3 | Step 3—Update the Initial Estimate 𝑸̂
𝒂(1,𝓵𝒊)

To update the initial estimate 𝑄̂1(1,𝓁𝑖) we first need to compute
the inverse probability weight 𝐻̂1(1,𝓁𝑖) for all subjects:

𝐻̂1(1,𝓁𝑖) =
𝐼(𝐴 = 1, 𝐶1 = 0)

𝑃 (𝐴 = 1|𝐿 = 𝓁𝑖)𝑃 (𝐶1 = 0|𝐴,𝐿 = 𝓁𝑖)

7 of 18

 10970258, 2025, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.70034 by M
ichael Schom

aker , W
iley O

nline L
ibrary on [29/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



using the predicted probabilities of censoring and exposure. This
inverse probability weight is then used to determine how the ini-
tial estimate 𝑄̂𝑎(1,𝓁𝑖) should be updated. Recall that this inverse
probability weight is used to update the initial estimator so that
the resulting estimator solves the estimating equations of the effi-
cient influence curve and thus inherits asymptotic local efficiency
and double robustness. This is achieved by running the follow-
ing logistic regression with weights 𝐻̂1(1, 𝐿) among subjects that
were uncensored at time 1:

logit[𝑃 (𝑌1 = 1|𝐶1 = 0, 𝐿)] = logit
[
𝑄̂

1(1, 𝐿)
]
+ 𝜀1(1)

This corresponds to a weighted logistic regression of the observed
event indicator at time point one with only an intercept 𝜀1(1)
and the logit of the individual initial estimates 𝑄̂1(1,𝓁𝑖) as an
offset term. The estimated intercept 𝜀̂1(1) can informally be con-
ceptualized as a measure of the residual association between the
observed outcome and the covariate 𝐿. Each individual estimate
𝑄̂

1(1,𝓁𝑖) can then be updated using the following formula

𝑄̂
1,∗(1,𝓁𝑖) = expit

{
logit

[
𝑄̂

1(1,𝓁𝑖)
]
+ 𝜀̂1(1)

}
Finally, the updated survival estimate 𝑆̂1,∗(1) is obtained by com-
puting the average of the individual updated predictions 1 −
𝑄̂

1,∗(1,𝓁𝑖). When implemented with parametric estimators for
the nuisance quantities as demonstrated here, the updated esti-
mate 𝑆̂1,∗(1) is doubly-robust: It is valid if either the outcome
model in Step 1 is correctly specified, or if the exposure and the
censoring models in Step 2 are correctly specified, but the three
models do not all need to be correctly specified. As such, the sta-
tistical assumptions required to obtain a valid estimate are less
stringent than those of the initial estimate. However, the causal
assumptions remain the same.

Similarly, updating the initial estimate 𝑆̂0(1) requires computing

𝐻̂0(1,𝓁𝑖) =
𝐼(𝐴 = 0, 𝐶1 = 0)

𝑃 (𝐴 = 0|𝐿 = 𝓁𝑖)𝑃 (𝐶1 = 0|𝐴,𝐿 = 𝓁𝑖)

then running the logistic regression logit[𝑃 (𝑌1 = 1|𝐶1 = 0, 𝐿)] =
logit

[
𝑄̂

0(1, 𝐿)
]
+ 𝜀0(1), weighted by 𝐻̂0(1, 𝐿), and computing

𝑄̂
0,∗(1,𝓁𝑖) = expit

{
logit

[
𝑄̂

0(1,𝓁𝑖)
]
+ 𝜀̂0(1)

}
and finally comput-

ing the average of 1 − 𝑄̂0,∗(1,𝓁𝑖).

4.1.4 | Step 4—Estimate the Variance of 𝒔̂𝒂(1)

The efficient influence curve of 𝑆̂𝑎(1) is given by [35]

𝐼𝐶𝑎(1) = 𝐻𝑎(1, 𝐿)
(
𝑄𝑎,∗(1, 𝐿) − 𝑌1

)
+ 𝑆𝑎,∗(1) −𝑄𝑎,∗(1, 𝐿) (6)

A simple variance estimator for 𝑆̂𝑎(1) is obtained by computing
the sample variance of Equation (6) (with estimates of each quan-
tity) scaled by a factor 1∕𝑛. A 95% Wald confidence interval is
then obtained by computing 𝑆̂𝑎,∗(1) ± 𝑧0.975

√
V̂ar

[
𝑆̂𝑎,∗(1)

]
. The

efficient influence curve for the average treatment effect at time
1 (𝐴𝑇 𝐸(1)) is the difference in the efficient influence curves of
𝑆̂1(1) and 𝑆̂0(1).

Following these steps, the estimates (95% confidence intervals
[CI]) were 𝑆̂1(1) = 0.94 (0.91, 0.97), 𝑆̂0(1) = 0.87 (0.86, 0.88), and
𝐴𝑇 𝐸(1) = 0.07 (0.04, 0.10).

4.2 | Estimating 𝑺𝒂(𝒕) for 𝒕 ≥ 2

We now provide the general steps for estimating the counterfac-
tual survival probabilities at the other time points. Because most
of these steps are similar to those we have just seen, we focus on
the differences. Recall that the complete R code is available on
GitHub (https://github.com/detal9/SurvTMLE).

Algorithm 1 describes the general algorithm for the estimation
of 𝑆𝑎(𝑡) using steps similar to Steps 1–4 of Section 4.1. However,
note that the order in which we present the steps differs. In Step
1a, a model for the exposure as a function of baseline covariates
is fitted. In Step 1b, a model is fitted for the censoring at each
time point 𝑗 = 1, . . . , 𝑡 among individuals that were uncensored
at time 𝑗 − 1 and who did not have the event yet at 𝑗 − 1, as a
function of exposure and covariates up to time 𝑗. The rest of the
algorithm proceeds recursively by first setting 𝑗 = 𝑡. The second
step (2a) is to model the event indicator at time 𝑗 among sub-
jects who were uncensored at time 𝑗 and who did not have the
event yet as a function of exposure and covariates up to time 𝑗.
Then predicted event probabilities under𝐴 = 𝑎 are computed for
all individuals who were uncensored at time 𝑗 − 1 (2b). For those
who had the event at time 𝑗 − 1, the predicted probability is set to
1 since 𝑌𝑗 = 1 when 𝑌𝑗−1 = 1. In Step 3, the initial estimate of the
event probability obtained in Step 2 is updated. Step 4 computes
a component of the variance of 𝑆̂𝑎(𝑡). Steps 2–4 are then repeated
for 𝑗 = 𝑡 − 1, 𝑡 − 2, . . . , 1, replacing the observed outcome indica-
tor of Step 2 by the final updated estimate of the event probability
obtained in the previous Step 4. Intuitively, this algorithm that
moves backward in time allows for the estimation of the event
probability at time 𝑡 for subjects who were uncensored as well as
those that were censored at time 𝑡, then additionally among those
censored at time 𝑡 − 1, and so forth. We provide a more formal
explanation of this algorithm based on iterated nested expecta-
tions in the Appendix A.

Following the previous steps, we obtained the estimates (95% CI):
𝑆̂1(2) = 0.88 (0.84, 0.92), 𝑆̂0(2) = 0.75 (0.74, 0.76), 𝑆̂1(3) = 0.83
(0.79, 0.88), 𝑆̂0(3) = 0.65 (0.64, 0.67), 𝑆̂1(4) = 0.79 (0.75, 0.84),
𝑆̂0(4) = 0.57 (0.55, 0.58). As can be seen, the estimates we
obtained here are very close to the true values reported in
Section 3. The estimated average treatment effects are𝐴𝑇 𝐸(2) =
0.13 (0.09, 0.17),𝐴𝑇 𝐸(3) = 0.18 (0.13, 0.22), and𝐴𝑇 𝐸(4) = 0.23
(0.18, 0.28).

4.3 | Modeling the Hazard

Once the counterfactual survival probabilities 𝑆𝑎(𝑡) have been
estimated for all 𝑡 = 1, . . . , 𝐾 , the counterfactual hazards 𝜆𝑎(𝑡)
can be estimated. This is achieved by inserting the estimated
counterfactual survival probabilities in Equation (5). To model
these hazards as a function of exposure and time, the next step
is to fit a model logit[𝜆̂𝑎(𝑡)] = 𝑋⊤𝑎,𝑡𝛾 where the outcomes are
the 2𝐾 estimated hazards and 𝑋 is a design matrix with 2𝐾
rows corresponding to each 𝑋⊤𝑎,𝑡, weighting each observation
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ALGORITHM 1 | General TMLE algorithm for estimating 𝑆𝑎(𝑡) with observed survival data structure 𝑂 = (𝐿1, 𝐴, 𝐶1, 𝑌1, 𝐿2 . . . , 𝐿𝐾 , 𝐶𝐾 , 𝑌𝐾 ).

1a. Fit a model for the exposure probability, 𝑃 (𝐴 = 1 ∣ 𝑳1).
1b. For all 𝑗 = 1,… , 𝑡, fit a model for the censoring probability at time 𝑗, 𝑃 (𝐶𝑗 = 1 ∣ 𝐴, 𝑳̄𝑗 , 𝐶𝑗−1 = 0, 𝑌𝑗−1 = 0),

among uncensored individuals at time 𝑗 − 1 that did not have the event previously.
Set 𝑄̂𝑎,∗(𝑡 + 1, 𝑳̄𝑡) = 𝑌𝑡
for 𝑗 = 𝑡 to 1 do

2a. Fit an outcome model for the event expectation 𝐸[𝑄̂𝑎,∗(𝑗 + 1, 𝑳̄𝑗+1) ∣ 𝐴 = 𝑎, 𝑳̄𝑗 , 𝐶𝑗 = 0, 𝑌𝑗−1 = 0]
among uncensored individuals at time 𝑗 that did not have the event previously.

2b. Predict the event expectation 𝑄̂𝑎(𝑗, 𝓵̄𝑖,𝑗) = 𝐸̂[𝑄̂𝑎,∗(𝑗 + 1, 𝑳̄𝑗+1) ∣ 𝐴 = 𝑎, 𝑳̄𝑗 = 𝓵̄𝑖,𝑗 , 𝑌𝑗−1 = 0]
for all uncensored individuals at time 𝑗 − 1; set 𝑄̂𝑎(𝑗, 𝓵̄𝑖,𝑗) = 1 if 𝑦𝑖,𝑗−1 = 1.

3a. Compute the inverse probability weights 𝐻̂𝑎(𝑗, 𝓵̄𝑖,𝑗) =
𝐼(𝐴=𝑎,𝐶𝑗=0)

𝑃 (𝐴=𝑎∣𝑳1=𝓵𝒊,𝟏)
∏𝑗
𝑘=1 𝑃 (𝐶𝑘=0∣𝐴,𝑳̄𝑘=𝓵̄𝑖,𝑘,𝐶𝑘−1=0)

.

3b. Fit the weighted logistic regression logit{𝐸[𝑄̂𝑎,∗(𝑗 + 1, 𝑳̄𝑗+1) ∣ 𝑌𝑗−1 = 0, 𝐶𝑗 = 0]} = logit
[
𝑄̂𝑎(𝑗, 𝑳̄𝑗)

]
+ 𝜀𝑎(𝑗)

among uncensored individuals at time 𝑗 that did not have the event previously.
3c. Update the predicted survival probabilities 𝑄̂𝑎(𝑗, 𝓵̄𝑖,𝑗) by computing
𝑄̂𝑎,∗(𝑗, 𝓵̄𝑖,𝑗) = expit

{
logit

[
𝑄̂𝑎(𝑗, 𝓵̄𝑖,𝑗)

]
+ 𝜀̂𝑎(𝑗)

}
and setting 𝑄̂𝑎,∗(𝑗, 𝓵̄𝑖,𝑗) = 1 if 𝑦𝑖,𝑗−1 = 1.

4. Compute 𝑑𝑎,𝑡(𝑗) = 𝐻̂𝑎(𝑗, 𝓵̄𝑖,𝑗)
[
𝑄̂𝑎,∗(𝑗, 𝓵̄𝑖,𝑗) − 𝑄̂𝑎,∗(𝑗 + 1, 𝓵̄𝑖,𝑗+1)

]
.

end for
The updated estimate 𝑆̂𝑎,∗(𝑡) is the mean of 1 − 𝑄̂𝑎,∗(1,𝑳1)
An estimator for the variance of 𝑆̂𝑎,∗(𝑡) is the sampling variance of 𝐼𝐶𝑎(𝑡) =

∑𝑡
𝑗=1 𝑑𝑎,𝑡(𝑗) + 𝑆̂

𝑎,∗(𝑡) − 𝑄̂𝑎,∗(1,𝑳1) scaled by a factor 1∕𝑛.

(each hazard) according to 𝑆̂𝑎(𝑡 − 1). In our example, we
fit the model logit[𝜆̂𝑎(𝑡)] = 𝛾0 + 𝛾1𝑎 + 𝛾2𝐼(𝑡 = 2) + 𝛾3𝐼(𝑡 = 3) +
𝛾4𝐼(𝑡 = 4) using data with the following structure, where the
columns of𝑋 are (1, 𝑎, 𝐼(𝑡 = 2), 𝐼(𝑡 = 3), 𝐼(𝑡 = 4))

𝜆̂𝑎(𝑡) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜆̂1(1)

𝜆̂0(1)

𝜆̂1(2)

𝜆̂0(2)

𝜆̂1(3)

𝜆̂0(3)

𝜆̂1(4)

𝜆̂0(4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝑋 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0

1 0 0 0 0

1 1 1 0 0

1 0 1 0 0

1 1 0 1 0

1 0 0 1 0

1 1 0 0 1

1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

weights =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

𝑆̂1(1)

𝑆̂0(1)

𝑆̂1(2)

𝑆̂0(2)

𝑆̂1(3)

𝑆̂0(3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Because this regression is a function of the estimated counter-
factual survival probabilities 𝑆̂𝑎(𝑡), the variance of the regres-
sion coefficient can be computed as a function of the variance
of 𝑆̂𝑎(𝑡). More precisely, a variance estimator for the regression
coefficients is obtained using the functional Delta-method (see
Zepeda-Tello et al., 2022 [46] for a tutorial on this topic). Follow-
ing Schnitzer et al. (2014) [35] (also see Appendix B), the efficient

influence curve of 𝛾 is

𝐼𝐶𝛾 =

{∑
𝑎,𝑡

𝑆𝑎(𝑡 − 1)
exp(𝑋⊤𝑎,𝑡𝛾)

[1 + exp(𝑋⊤𝑎,𝑡𝛾)]2
𝑋𝑎,𝑡𝑋

⊤
𝑎,𝑡

}−1

×
∑
𝑎,𝑡

{
−𝑋𝑎,𝑡 +𝑋𝑎,𝑡+1[1 + exp(𝑋⊤𝑎,𝑡+1𝛾)]

−1
}
𝐼𝐶𝑎(𝑡)

𝐼𝐶𝛾 is a matrix with 𝑛 rows and as many columns as there are
𝛾 coefficients. An estimator of the variance-covariance matrix of
𝛾̂ is obtained by computing the sample variance of the empirical
version of 𝐼𝐶𝛾 , scaled by a factor 1∕𝑛. This formula is obtained
by treating the data as 𝑛 independent replications of the lon-
gitudinal sequence {𝑳1, 𝐴, 𝐶1, 𝑌1,𝑳2, 𝐶2, 𝑌2, . . . ,𝑳𝐾, 𝐶𝐾, 𝑌𝐾}. It
does not require assuming that there is no within-patient cor-
relation, or assuming a specific structure for the within-patient
correlation. Box 3 provides the R code associated with those
steps. In our example, this yields the following estimates (95%CI):
𝛾̂0 = −1.86 (−2.02,−1.71), 𝛾̂1 = −0.93 (−1.22,−0.64), 𝛾̂2 = 0.04
(−0.23, 0.31), 𝛾̂3 = −0.05 (−0.32, 0.23), 𝛾̂4 = −0.08 (−0.39, 0.22).
Again, these estimates are very close to the true values we com-
puted in Section 3.

5 | Guidelines

We now provide recommendations on how best to use TMLE
to estimate the effect of a point exposure on a time-to-event
outcome.

5.1 | Type of Research Questions

The method we have presented in this tutorial is only appropriate
for estimating the effect of a binary or categorical point exposure
on a time-to-event outcome in the presence of missing-at-random
censoring. This framework is suitable for many common research
questions provided that machine learning methods are used
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Box 3 | R code for estimating the hazard model.

lambdas <- c(1 - S1_1.star,
(S1_1.star - S2_1.star)/S1_1.star,
(S2_1.star - S3_1.star)/S2_1.star,
(S3_1.star - S4_1.star)/S3_1.star,
1 - S1_0.star,
(S1_0.star - S2_0.star)/S1_0.star,
(S2_0.star - S3_0.star)/S2_0.star,
(S3_0.star - S4_0.star)/S3_0.star);

lambdas[lambdas < 0] <- 0;

data_St <- data.frame(lambdas = lambdas,
A = rep(c(1,0),each = 4),
Time = rep(1:4,2),
weights = c(1, S1_1.star, S2_1.star, S3_1.star,

1, S1_0.star, S2_0.star, S3_0.star));

## Logistic regression
fit.mod <- glm(lambdas ∼A + factor(Time), family = "binomial", weights = weights, data = data_St);
B <- matrix(coef(fit.mod),nrow=5)
X <- matrix(model.matrix(fit.mod), nrow = 8, byrow = FALSE);

## Efficient influence curve
# Objects for the rows of X
X1.1 <- t(X[1,, drop = FALSE]);
X1.0 <- t(X[5,, drop = FALSE]);
...

#Time 1
term1_1_t1 <- as.numeric(exp(t(X1.1)
term1_0_t1 <- as.numeric(exp(t(X1.0)
term1_t1 <- term1_0_t1 + term1_1_t1;
term2_1_t1 <- (-X1.1 + X2.1
term2_0_t1 <- (-X1.0 + X2.0
term2_t1 <- term2_1_t1 + term2_0_t1;
...

#Variance
var.hr <- var(t(solve(term1_t1 + term1_t2 + term1_t3 + term1_t4)

(term2_t1 + term2_t2 + term2_t3 + term2_t4)))/n;

#Odds ratios and 95
exp(cbind(B, B - 1.96*sqrt(diag(var.hr)), B + 1.96*sqrt(diag(var.hr))));

to avoid making inappropriate parametric assumptions. For
example, this approach can be used to estimate the effect of start-
ing on Drug A versus starting on Drug B among new users. As
another example, the TMLE we have presented could also be used
to compare the time to recurrence or death of people who sur-
vived a first myocardial infarction and returned to work within
a month according to whether they return to work full-time or
part-time. Research questions that involve a time-varying expo-
sure, such as per protocol analyses or estimating the effect of
a cumulative exposure, cannot be answered with the specific
TMLE we have described herein. However, extensions allowing
for time-varying exposures are available and described elsewhere
[35, 40]. Extensions of TMLE for time-to-event outcomes that
accommodate continuous exposures are not immediately avail-
able as dose-response estimands are not pathwise-differentiable
parameters [47], though other estimators for specific contexts are
sometimes discussed (e.g., [48]).

5.2 | Appropriate Study Design and Variables
to Measure

As in all studies considering a time-to-event outcome, the design
must comprise some longitudinal aspect. To be able to adequately
control the potential selection bias due to censoring, one must
measure not only baseline confounders, but also time-varying

covariates that are susceptible to affect both censoring and out-
come. This does not constitute a weakness of TMLE as com-
pared to traditional approaches such as Cox regression, but rather
a strength, since it allows TMLE to overcome the commonly
made independent censoring assumption. We note that baseline
confounders, by definition and assumption, must not have been
affected by the exposure. As such, it may be preferable that base-
line covariates be measured some time before the exposure. Using
a causal diagram, constructed using the literature and expert
knowledge, can be helpful in identifying which variables to mea-
sure and include in the analysis [49, 50].

Regarding the choice of variables to adjust for, it can be noted
in Algorithm 1 that both the model for the expected outcome
at time 𝑗, 𝐸(𝑄̂𝑎,∗(𝑗 + 1)|𝐴,𝑳𝑗 , 𝐶𝑗 = 0, 𝑌𝑗−1 = 0), and the model
for the probability of censoring at time 𝑗, 𝑃 (𝐶𝑗 = 1|𝐴,𝑳𝑗 , 𝐶𝑗−1 =
0, 𝑌𝑗−1 = 0), formally depend on all previous covariates 𝑳𝑗 =
(𝑳1,𝑳2, . . . ,𝑳𝑗). It might not be feasible to fit models condi-
tional on the complete covariate history in practice, especially
in applications with numerous time points or a small sample.
Fortunately, variables that can be assumed not to be predictive
of the outcome at time 𝑗 can be excluded from the models. For
example, if one is willing to assume that the event risk only
depends on the exposure and the covariates measured at the two
most recent time points, one could correspondingly fit a model
for 𝑃 (𝐶𝑗 = 1|𝐴,𝑳𝑗 ,𝑳𝑗−1, 𝐶𝑗−1 = 0, 𝑌𝑗−1 = 0).
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5.3 | Discretization of the Follow-Up Period

As previously mentioned, the follow-up period must be dis-
cretized in several sub-periods when using the TMLE algorithm
we have presented. The choice of the length of the sub-periods
can be challenging in practice. Selecting shorter periods of time
avoids a loss of information, but can lead to data-sparsity [51].
We thus recommend dividing the follow-up into relatively short
sub-periods of time while ensuring that some outcome events
and censoring occur in each sub-period. Note that it is not
strictly necessary for all sub-periods to have the same length. For
example, longer sub-periods could be used when fewer events
occur and shorter sub-periods could be used when there are
more events.

5.4 | Using Machine Learning in TMLE

When estimating𝑆𝑎(𝑡) using TMLE, there are three types of mod-
els that need to be fitted: A model for the exposure probability,
models for the censoring indicators, and models for the event
indicators. In the tutorial we have presented above, we used logis-
tic regression models for each of these. However, as mentioned
in the introduction, one key advantage of using TMLE is that it
allows for the usage of data-adaptive procedures (machine learn-
ing) to fit its component models. While the usage of such pro-
cedures does not protect against residual confounding due to
unmeasured confounders, it can minimize residual confounding
due to incorrect modeling of associations with measured con-
founders. Indeed, using machine learning algorithms allows the
model to learn from the data how best to model associations
with confounders. To estimate 𝑆𝑎(𝑡) using TMLE together with
machine learning algorithms, one only needs to replace the logis-
tic regression models we have used in Steps 1 and 2 of the algo-
rithms with appropriate machine learning approaches. Nothing
else in the algorithm changes. In addition, because the MSM for
the hazards is a function of the estimated 𝑆̂𝑎(𝑡), this part of the
approach also remains unchanged. For modeling the exposure
and censoring, methods for binary or multi-level dependent vari-
ables should be used, whereas methods appropriate for modeling
bounded continuous probabilities should be used to model the
outcome.

Even though TMLE better combines with machine learning
than singly-robust approaches, care must be given to the choice
of algorithms to use [52]. Indeed, it is important to choose
approaches that converge fast enough to the true model as sam-
ple size increases, and that are additionally not too adaptive
(i.e., they meet the Donsker condition) to guarantee the sta-
tistical properties of TMLE. Tree-based methods, such as ran-
dom forests and gradient boosting, have been observed to yield
biased estimates and confidence intervals that include the true
parameters less often than they should (i.e., undercoverage) in
simulation studies [32]. As such, some authors have recom-
mended using less flexible methods like generalized additive
models or multivariate adaptive regression splines [52]. It is very
common to use Super Learner [53] together with TMLE. Super
Learner is an ensemble method that produces predicted values
as a linear combination of the predictions of multiple methods
(the learners), where the weight attributed to each learner is
determined using cross-validation [53]. An advantage of Super

Learner is that it is expected to put large weights on simpler
algorithms in its library whenever they are appropriate. As such,
it is recommended to include several methods of diverse com-
plexity in the Super Learner library [52]. If it is believed that
the flexibility of tree-based methods is required to adequately
control for confounding, then some form of sample-splitting
should be used because it circumvents the need for the Donsker
condition [52, 54]. Cross-fitting is a particularly interesting type
of sample-splitting procedure because of how efficiently it uses
the data. A review of cross-fit estimators for causal inference can
be found elsewhere [55]. The highly adaptive lasso is a very flex-
ible algorithm that meets the theoretical conditions (i.e., ade-
quate convergence rate and Donsker condition) required to be
used without cross-fitting [56, 57]. Guidelines concerning the use
of the Super Learner have recently been published [58]. These
guidelines notably provide guidance in determining the number
of cross-validation splits and which learners to include in the
Super Learner.

5.5 | Choice of Estimand

We have demonstrated how to estimate counterfactual sur-
vival probabilities and counterfactual hazards. As indicated ear-
lier, hazards may sometimes require stronger assumptions to
be interpreted causally compared to risks. This is because the
discrete-time hazard conditions on survival up to time 𝑡 − 1. If
there are unmeasured common causes of survival status at 𝑡 and
𝑡 − 1 we typically get selection bias due to paths such as 𝐴→
𝑌𝑡−1 ← 𝑈 → 𝑌𝑡. This means that the hazards at time 𝑡 may dif-
fer between the two exposure groups simply because of differ-
ent individuals who survive until 𝑡 − 1 under 𝑎 = 1 versus 𝑎 =
0—because of exposure effects before 𝑡 − 1 [59]. This suggests
that we should ideally always calculate the counterfactual sur-
vival probabilities, though the counterfactual hazards may give
us a better direct comparison to regression estimates [16].

5.6 | R Function

We developed an R function, surv.TMLE that is available
on GitHub (https://github.com/detal9/SurvTMLE) to implement
TMLE, which we briefly describe herein. The complete docu-
mentation and examples using simulated data are available on
GitHub. To use this function, the data must first be arranged
in a wide format, with a single row for each individual. The
Yvar, Cvar, Avar, Lvar, L0var arguments are used to sup-
ply the names of the outcome (𝑌1, . . . , 𝑌𝐾 ), censoring (𝐶1,
. . . , 𝐶𝐾 ), exposure (𝐴), time-varying confounders (𝐿1, . . . , 𝐿𝐾 )
and time-fixed baseline variables, respectively. All models are
adjusted for time-fixed baseline variables, whereas it is possi-
ble to choose using “lookback” arguments how many previous
time-points should be used when modeling the outcome and cen-
soring at each time-point (recall the discussion in the second
paragraph of Section 5.2). The Ymod, Cmod, Amod arguments are
used to determine if parametric models (=“parametric”) or
machine learning (=“SL”) methods should be used to model
the outcome, the censoring and the exposure, respectively. If
machine learning methods are used, SL.library arguments
are available to specify which learners should be considered. Note
that with a multilevel categorical exposure, A.SL.library
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is ignored when Amod = “SL”, and a polychotomous regres-
sion and multiple classification algorithm is used [60], since the
SuperLearner package in R does not currently accommodate
multinomial dependent variables. The argument MSM.form can
optionally be used to specify the right hand side of a formula
for an MSM relating the logit of the hazards to exposure and
time. The gbound argument is used as an ad-hoc solution to
near-positivity violations. It is used to replace estimated value of
exposure and censoring probabilities that are too close to zero
by the value set in gbound. Following recent guidelines [58],
the default behavior of the function is to adapt the number of
cross-validation folds of each Super Learner according to the
effective sample size. Our function uses the mean squared error
as a loss function within Super Learner, although recent guide-
lines recommend using the mean negative log-likelihood when
modeling binary data [58]. We tried using the latter loss function,
but this resulted in errors in examples with larger sample sizes.

6 | Application

6.1 | Data

We now consider a real data illustration concerned with the esti-
mation of the effect of statin persistence for at least three months
after initiation on the occurrence of a first cardiovascular event
or death, among adults aged 66 or older in Quebec, Canada.

We used medical administrative data from the Quebec Inte-
grated Chronic Disease Surveillance System, which is formed by
the linkage of five administrative databases: The health insur-
ance registry, the pharmaceutical services database, the physi-
cian claims database, the hospitalization database, and the death
registry [61]. Quebec has a public health insurance plan to
which it is mandatory to subscribe. In addition, the vast major-
ity (> 90%) of people aged 65 and older are covered by the pub-
lic drug insurance plan. We included people aged 66 or older
who claimed a statin treatment between 2008 and 2013, who
had no claim for statins in the previous year, who had no his-
tory of cardiovascular disease in the five years prior to their
first claim of statins and who did not live in a long-term care
residence in the previous year (because data on drug claims
are unavailable for them). A total of 69 632 people were thus
included. Statin treatment was identified using common denom-
ination codes corresponding to atorvastatin, fluvastatin, lovas-
tatin, pravastatin, rosuvastatin, simvastatin, and the combina-
tion niacin/lovastatin. Cardiovascular diseases were identified
using validated definitions [62, 63] and mostly consisted of
strokes, transient ischemic attacks, myocardial infarction, unsta-
ble angina, coronary artery bypass graft and percutaneous coro-
nary interventions.

The exposed group (𝐴 = 1) comprised people for whom there was
no gap in refilling their statin claim over the three months follow-
ing initiation, after considering a 50% grace period and any addi-
tional hospitalization periods (because drugs are supplied by the
hospital during these periods). In Quebec, these drugs are often
supplied for a duration of 30 days, or of 7 days for people using
a blister card. The non-exposed group (𝐴 = 0) comprised people
who had at least one gap in the same time-period. The follow-up
for events started after this three-month period. We excluded

3500 people (5%) at this stage because they experienced a first
cardiovascular event, died or were transferred to a long-term
residence during the three-month period used to assess expo-
sure. The remaining 66 132 people were followed until the occur-
rence of a first cardiovascular event or death from any cause
(𝑌 = 1), discontinuation of their subscription to the public health
insurance plan (e.g., moving out of the province, 𝐶 = 1) or for a
maximum of two years (𝐶 = 1).

The following covariates were considered as potential con-
founders based on experts’ knowledge: Age, sex (male/female),
residence area (urban = ≥ 10 000 inhabitants/rural), number
of visits in the year prior to statin initiation to a generalist,
to a specialist, to an emergency room, total number of hospi-
talizations in the year prior to statin initiation, prevalent dia-
betes (yes/no), hypertension (yes/no), chronic kidney disease
(yes/non), a comorbidity score combining Charlson and Elix-
hauser scores [64], number of different medications claimed in
the year prior to statin initiation, a material and social depriva-
tion index (where missing values are considered as a category)
[65], aspirin or antiplatelet agents claims (yes or no), oral anti-
coagulants (yes/no), blood pressure therapy (yes/no), and other
lipid-lowering drugs (yes/no). Only baseline values of these vari-
ables were considered.

The project was approved by the ethics board of the CHU de
Québec (# 2020–4892).

6.2 | Analysis

Two different approaches were used to estimate the effect of
statin persistence on the occurrence of a cardiovascular event
or death. First, we used a Cox model adjusted only for base-
line covariates. Next, we used the TMLE approach described in
this tutorial, with follow-up divided into 12 2-month periods.
We chose to consider two-month periods to avoid data sparsity.
In the TMLE procedure, the exposure, censoring and outcome
processes were estimated using a Super Learner with a simple
mean, main terms logistic regression, a logistic regression with
two-way interaction terms and quadratic terms for continuous
variables, a generalized additive model, and earth (an imple-
mentation of multivariate adaptive regression splines) as learn-
ers. These learners were chosen to try to include diverse levels
of flexibility among the learners, while excluding highly flexi-
ble approaches, which would require sample splitting to be valid
[52]. A relatively small library was chosen to keep computational
burden reasonable (three hours to run the TMLE analysis). We
tried to include a modified lasso that accommodates bounded
continuous outcomes, both as a possible learner and a screener
for pre-selecting covariates, but this resulted in errors. The highly
adaptive lasso could not be used due to installation restrictions of
the server on which analyses were conducted. In our application,
169 Super Learners were fitted: One for the exposure, 12 for cen-
soring probabilities at each time point, and 154 for the outcome (2
exposure levels × 12 time points × 𝑡 per time point). The number
of cross-validation folds was determined data-adaptively and was
two for modeling the exposure, and between two and ten for mod-
eling the censoring and outcome at different time-points. Box 4
provides the R code used to implement TMLE with Super Learner
in our illustration.
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Box 4 | R code for the real data illustration.

results2 = surv.TMLE(dat = baseTMLE\_final\_analyse\_large\_complete,
Yvar = c("Y.1", "Y.2", "Y.3", ..., "Y.12"),
Cvar = c("cens1", "cens2", "cens3", ..., "cens12"),
Avar = "statinsITT",
Lvar = list(c("Sexe", "zone", "quincomb", "age", "ScoreCH\_Combined", "HYP\_Status", "Renal\_Status",

"nbDenCom", "diabete", "nbVisitOmni", "nbVisitSP", "nburg", "nbHosp", "aspirinebin",
"anticoagulantsbin", "PAbin", "hypolipemiantsbin"),

...,
c("Sexe", "zone", "quincomb", "age", "ScoreCH\_Combined", "HYP\_Status", "Renal\_Status",
"nbDenCom", "diabete", "nbVisitOmni", "nbVisitSP", "nburg", "nbHosp", "aspirinebin",
"anticoagulantsbin", "PAbin", "hypolipemiantsbin")),

L0var = NULL, lookback = 1,
Ymod = "SL", Cmod = "SL", Amod = "SL",
Y.SL.library = c("SL.mean", "SL.glm", "SL.glm.interaction", "SL.gam", "SL.earth"),
C.SL.library = c("SL.mean", "SL.glm", "SL.glm.interaction", "SL.gam", "SL.earth"),
A.SL.library = c("SL.mean", "SL.glm", "SL.glm.interaction", "SL.gam", "SL.earth"),
gbound = 0.005, MSM.form = ∼statinsITT+as.factor(time));

6.3 | Results

Table 2 describes the baseline characteristics of the sample. Most
people remained persistent for at least three months (93.6%). As
compared to non-persistent users, persistent users were more
likely to have hypertension, and to claim aspirin and blood pres-
sure treatment. Otherwise, non-persistent and persistent users
had similar baseline characteristics.

Table 3 reports the estimated hazard ratios using a traditional Cox
model approach and TMLE with Super Learner. Both approaches
lead to similar conclusions, wherein statin persistence for at least
three months is associated with a reduction of the hazard of car-
diovascular event or death, although the extent of the estimated
reduction varies between approaches. Figure 2 represents the
estimated survival curves for each exposure group. It shows that
both groups have a relatively large drop in survival within the first
two months, but the drop is much larger in the non-persistent
group than in the persistent group. The survival probability then
decreases at a similar rate within both groups.

7 | Discussion

Statistical methods for estimating causal effects have been devel-
oping at an extremely fast rate in the last few decades. It is
thus challenging for analysts interested in this topic to remain
up-to-date. This challenge is accentuated by the fact that new
methods are generally first introduced in articles targeting a the-
oretical statistics audience. Such articles are rarely accessible to
analysts who focus more on applications. In this article, we have
presented a tutorial for using targeted maximum likelihood esti-
mation to estimate the causal effect of a point exposure on a
time-to-event outcome. More specifically, our tutorial explained
how to use TMLE to estimate counterfactual survival curves and
the parameters of a working marginal structural model. To the
best of our knowledge, no tutorial on this topic was yet available.
Our article adds to a growing literature of tutorials concerning
the use of TMLE in specific settings [7, 12–15].

Our tutorial aimed to provide an intuition of how TMLE operates
to estimate a causal effect with a time-to-event outcome, while
providing enough detail to allow readers with the required skills

to implement the method on their own and to adapt the imple-
mentation to specifics of their application (e.g., with a different
time ordering of variables than the one we considered). We have
also provided boxes with example R code implementing TMLE in
a simple illustration based on simulated data to facilitate replica-
tion. To further facilitate the implementation of TMLE, we have
also provided an R function, available on GitHub (https://github.
com/detal9/SurvTMLE). This GitHub repository includes addi-
tional documentation for the R function we have developed as
well as supplementary examples based on simulated data. While
our tutorial focused on the case of a binary exposure, the R func-
tion we provide also supports categorical exposures. Our article
also included a guidelines section discussing when it is appropri-
ate to use TMLE to estimate a causal effect as well as best practices
for implementing TMLE. Finally, we have provided an illustra-
tion with real data. In this illustration, TMLE with machine learn-
ing produced a hazard ratio estimate suggesting less benefit from
statin persistence than the traditional Cox model, which is more
consistent with previous results of randomized controlled trials
(OR for all-cause mortality = 0.86 [95% CI: 0.79, 0.94], RR for car-
diovascular disease = 0.75 [95% CI: 0.67, 0.80]) [66]. TMLE also
allowed for the estimation of the counterfactual survival curve.

Some limitations of our tutorial also need to be taken into con-
sideration. First, we have only considered the case of a sin-
gle exposure measured at a single time-point. TMLE can also
be used with multiple exposures or with a time-varying expo-
sure. Petersen et al. have proposed TMLE algorithms adapted
to such cases [40]. While we propose an R function implement-
ing TMLE for a time-to-event outcome, we also recognize that
various other implementations of TMLE are available, such as
the R package ltmle. This package is very flexible, allowing
to estimate the effect of fixed or dynamic time-varying expo-
sure regimes on a time-varying outcome, with or without cen-
soring. Because the ltmle package fits more generic purposes,
some analysts may however find it easier to use our proposed R
function than ltmle. Our proposed function also includes fea-
tures specific to the time-to-event context that are not available
in the ltmle package, such as modeling the counterfactual haz-
ards with an MSM. We have also focused on a specific TMLE
algorithm for time-to-event outcomes, but several other algo-
rithms have been developed [40, 42–44, 67–70]. Among others,
TMLE algorithms that accommodate competing risks [44, 71], or
that do not require discretizing the follow-up time are available
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TABLE 2 | Baseline characteristics of new statin users aged 66 or more without history of cardiovascular disease according to three-month
persistence status in Quebec, Canada.

Persistent Non-persistent
Variables 𝒏 = 61 890 (93.6%) 𝒏 = 4242 (6.4%)

Sex, n (%)
Female 33 981 (54.9) 2530 (59.6)
Male 27 909 (45.1) 1712 (40.4)

Age, mean (SD) 71.1 (5.6) 71.0 (6.0)
Residence area, n (%)

Urban 46 179 (75.8) 3207 (77.8)
Rural 14 747 (24.2) 916 (22.2)

Material deprivation quintile, n (%)
Quintile 1 (most privileged) 10 326 (16.7) 736 (17.4)
Quintile 2 11 084 (17.9) 736 (17.4)
Quintile 3 11 601 (18.7) 798 (18.8)
Quintile 4 12 710 (20.5) 828 (19.5)
Quintile 5 (most deprived) 12 710 (20.5) 862 (20.3)
Missing 3459 (5.6) 282 (6.6)

Social deprivation quintile, n (%)
Quintile 1 (most privileged) 10 842 (17.5) 692 (16.3)
Quintile 2 11 725 (18.9) 773 (18.2)
Quintile 3 12 506 (20.2) 832 (19.6)
Quintile 4 11 929 (19.3) 810 (19.1)
Quintile 5 (most deprived) 11 429 (18.5) 864 (20.4)
Missing 3459 (5.6) 271 (6.4)

Hypertension, n (%) 31 567 (51.0) 1707 (40.2)
Chronic kidney disease, n (%) 3826 (6.2) 264 (6.2)
Diabetes, n (%) 8333 (13.5) 614 (14.5)
Use of aspirin, n (%) 26 416 (42.7) 1337 (31.5)
Use of anticoagulants, n (%) 5477 (8.8) 403 (9.5)
Use of other lipid-lowering drugs, n (%) 3274 (5.3) 255 (6.0)
Blood pressure treatment, n (%) 44 724 (72.3) 2460 (58.0)
Comorbidity score, mean (SD) 1.9 (2.9) 1.9 (3.2)
Number of medications in previous year, mean (SD) 9.0 (5.4) 8.1 (5.5)
Number of visits to a general practitioner in previous year, mean (SD) 1.1 (1.4) 1.0 (1.5)
Number of visits to a specialist in previous year, mean (SD) 2.7 (5.7) 2.8 (6.8)
Number of visits to an emergency in previous year, mean (SD) 0.3 (0.8) 0.3 (0.8)
≥ 1 visit for an emergency in previous year, n (%) 10 926 (17.7) 722 (17.0)
Number of days of hospitalization in previous year, mean (SD) 0.1 (0.3) 0.1 (0.3)
≥ 1 day of hospitalization in previous year, n (%) 3936 (6.4) 232 (5.5)

TABLE 3 | Estimated hazard ratio of a first cardiovascular event or
death according to statin persistence among new users aged 66 or more
in Quebec, Canada.

Method HR (95% CI)

Traditional Cox model 0.69 (0.63, 0.76)
TMLE with super learner 0.81 (0.73, 0.89)

Note: HR = Hazard ratio, CI = Confidence interval.

[42–44]. The R package survtmle available on https://github.
com/benkeser/survtmle allows for the estimation of adjusted
cumulative incidences with or without competing risks using
TMLE [71]. Notably, the TMLE algorithm we have considered
requires a discretization of the follow-up time, which can be
a challenging task and may lead to bias if discretization is too
coarse [51]. A coarse discretization may however be required if
sample size is small to avoid having sub-periods without any
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FIGURE 2 | Counterfactual survival probabilities estimated by TMLE with Super Learner.

event, which may lead to increased bias in a direction that is chal-
lenging to anticipate. Finally, the variance estimators we have
used are based on the efficient influence function and are only
valid if the exposure, censoring and outcome models are all esti-
mated consistently at adequate convergence rates, either using
not too adaptive approaches (i.e., Donsker condition) [37] or
using cross-fitting [54]. While this may seem like an important
limitation of TMLE as compared to alternative approaches,
TMLE allows the incorporation of machine learning methods
to flexibly model the exposure, censoring and outcome. When
machine learning approaches are used within TMLE, the mod-
eling assumptions that need to be made are much more limited
than when parametric models are employed. For instance, many
machine learning algorithms can readily accommodate complex
interactions and non-linear relations. These variance estimators
are also sensitive to near-positivity violations. To some extent,
issues related to near-positivity violations can be controlled in
an ad-hoc fashion by truncating exposure and censoring prob-
abilities using the gbound option in our R function. Variance
estimators that are more robust to near-positivity violations have
recently been introduced [38]. Future work includes the expan-
sion of the R function we have supplied. We aim to implement the
novel variance estimators that are more robust to near-positivity
violations as well as cross-fitting capabilities in the future [38, 54].
Extensions to time-varying treatments and to permit competing
risks will also be considered.

Some limitations of TMLE itself should also be noted. While
using machine learning algorithms can help to better control
for measured confounders, it does not help control for unmea-
sured (or poorly measured) confounders. The bias attributable
to unmeasured confounders can often be expected to be much
greater than the bias due to incorrect modeling of measured con-
founders. In addition, the TMLE algorithm is more complex than
many alternatives, particularly propensity score approaches. This
additional complexity can come at the cost of greater computa-
tional burden and poorer scalability to large databases, especially
when machine learning algorithms are used.

In conclusion, we trust that this tutorial will be helpful to various
kinds of readers, whether statisticians who are looking for a gen-
tle theoretical introduction to TMLE or to analysts who aim to use

TMLE to analyze their data. Given its theoretical benefits as com-
pared to traditional approaches, we strongly encourage analysts
to give TMLE a try.
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Appendix A

Iterated Nested Expectation

In this appendix, we demonstrate how the counterfactual survival prob-
ability 𝑆𝑎(𝑡) is identified from the observed data using iterated nested
expectations. These iterated nested expectations are at the core of
Algorithm 1.

First, note that 𝑆𝑎(𝑡) = 𝑃 (𝑌 𝑎,𝐶𝑡=0
𝑡 = 0) = 1 − 𝑃 (𝑌 𝑎,𝐶𝑡=0

𝑡 = 1) = 1 −
𝐸[𝑌 𝑎,𝐶𝑡=0
𝑡 ]. Indeed, the counterfactual probability of remaining event-free

until time 𝑡 (𝑆𝑎(𝑡)) can equivalently be represented as the counterfactual
probability of having no event at time 𝑡 or before time 𝑡 in a hypothetical
population where censoring is prevented (𝑃 (𝑌 𝑎,𝐶𝑡=0

𝑡 = 0)). Adding the
condition that censoring is prevented (𝐶𝑡 = 0) is necessary because the
event indicator 𝑌𝑡 is missing if there is censoring.

We now demonstrate with details the identifiability for the case 𝑡 = 2, that
is, we show that

𝐸
(
𝑌 𝑎,𝐶2=0

2

)
= 𝐸

{
𝐸
[
𝐸
(
𝑌2|𝐴 = 𝑎, 𝐶2 = 0,𝑳2

)|𝐴 = 𝑎, 𝐶1 = 0,𝑳1

]}
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under the causal assumptions described in Section 3. First, using the rule
of total expectations, we can write

𝐸
(
𝑌 𝑎,𝐶2=0

2

)
= 𝐸

[
𝐸
(
𝑌 𝑎,𝐶2=0

2 |𝑳1

)]
Next, appealing to the conditional exchangeability assumption
(𝑌 𝑎,𝐶𝑡=0
𝑡 ⊥⊥ 𝐴|𝑳1 and 𝑌 𝑎,𝐶𝑡=0

𝑡 ⊥⊥ 𝐶𝑘|𝐴,𝑳𝑘, 𝐶𝑘−1 = 0) we have

𝐸
[
𝐸
(
𝑌 𝑎,𝐶2=0

2 |𝑳1

)]
= 𝐸

[
𝐸
(
𝑌 𝑎,𝐶2=0

2 |𝐴 = 𝑎,𝑳1

)]
= 𝐸

[
𝐸
(
𝑌 𝑎,𝐶2=0

2 |𝐴 = 𝑎, 𝐶1 = 0,𝑳1

)]
Using once more the rule total expectations followed by the conditional
exchangeability assumption, we get

𝐸
[
𝐸
(
𝑌 𝑎,𝐶2=0

2 |𝐴 = 𝑎, 𝐶1 = 0,𝑳1

)]
= 𝐸

{
𝐸
[
𝐸
(
𝑌 𝑎,𝐶2=0

2 |𝐴 = 𝑎, 𝐶1 = 0,𝑳2

)|𝐴 = 𝑎, 𝐶1 = 0,𝑳1

]}
= 𝐸

{
𝐸
[
𝐸
(
𝑌 𝑎,𝐶2=0

2 |𝐴 = 𝑎, 𝐶2 = 0, 𝐶1 = 0,𝑳2

)
× |𝐴 = 𝑎, 𝐶1 = 0,𝑳1

]}
Because 𝐶2 = 0 implies 𝐶1 = 0, the last equality can be simplified to

𝐸
{
𝐸
[
𝐸
(
𝑌 𝑎,𝐶2=0

2 |𝐴 = 𝑎, 𝐶2 = 0,𝑳2

)|𝐴 = 𝑎, 𝐶1 = 0,𝑳1

]}
Finally, using the consistency assumption (i.e., 𝐴 = 𝑎 and 𝐶𝑡 = 0 ⇒ 𝑌𝑡 =
𝑌
𝑎,𝐶𝑡=0
𝑡 ), we can write this last equation as

𝐸
{
𝐸
[
𝐸
(
𝑌2|𝐴 = 𝑎, 𝐶2 = 0,𝑳2

)|𝐴 = 𝑎, 𝐶1 = 0,𝑳1

]}
which completes the demonstration.

The general proof proceeds similarly, appealing successively to the rule of
total expectations and the conditional exchangeability assumption, and
finally to the consistency assumption to show that

𝐸
(
𝑌
𝑎,𝐶𝑡=0
𝑡

)
= 𝐸

(
𝐸
{
· · ·𝐸

[
𝐸
(
𝑌𝑡|𝐴 = 𝑎, 𝐶𝑡 = 0,𝑳𝑡

)
× |𝐴 = 𝑎, 𝐶𝑡−1 = 0,𝑳𝑡−1

]
· · · |𝐴 = 𝑎, 𝐶1 = 0,𝑳1

})
Algorithm 1 implements this formula. Indeed, this algorithm first esti-
mates the inner expectation 𝐸

(
𝑌𝑡|𝐴 = 𝑎, 𝐶𝑡 = 0,𝑳𝑡

)
then produces dou-

bly robust estimates of this quantity using TMLE. The updated predicted
probabilities (𝑄̂𝑎(𝑡,𝓵𝑖,𝑡)) are then used as the outcome for the next itera-
tion, which implements the second innermost expectation, that is,

𝐸

⎡⎢⎢⎢⎢⎣
𝐸
(
𝑌𝑡|𝐴 = 𝑎, 𝐶𝑡 = 0, 𝐿𝑡

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑄𝑎(𝑡,𝓵𝑖,𝑡)

|𝐴 = 𝑎, 𝐶𝑡−1 = 0,𝑳𝑡−1

⎤⎥⎥⎥⎥⎦
These steps are repeated until the outermost expectation is imple-
mented by computing the sample mean of the updated predicted values
𝑄̂
𝑎,∗(1,𝑳1).

Appendix B

Derivation of the Influence Function of the Parameters of the
Hazard Marginal Structural Model

The parameters of the hazard marginal structural models are defined as

𝛾 = argmax
𝛾

𝐸

{∑
𝑎,𝑡

[
log

(
expit(𝑋⊤𝑎,𝑡𝛾)

𝐼(𝑇 𝑎=𝑡)(1 − expit(𝑋⊤𝑎,𝑡𝛾))
𝐼(𝑇 𝑎>𝑡)

)]}

The previous expectation can be written as

∑
𝑎,𝑡

𝑆𝑎(𝑡 − 1)
{
𝑆𝑎(𝑡 − 1) − 𝑆𝑎(𝑡)
𝑆𝑎(𝑡 − 1)

log(expit(𝑋⊤𝑎,𝑡𝛾))

+
[

1 − 𝑆
𝑎(𝑡 − 1) − 𝑆𝑎(𝑡)
𝑆𝑎(𝑡 − 1)

][
log(1 − expit(𝑋⊤𝑎,𝑡𝛾))

]}
The score equation is obtained by taking a derivative of the previous
expression according to 𝛾 and is

𝑈 (𝑆, 𝛾) =
∑
𝑎,𝑡

𝑆𝑎(𝑡 − 1)𝑋𝑎,𝑡
[
𝑆𝑎(𝑡 − 1) − 𝑆𝑎(𝑡)
𝑆𝑎(𝑡 − 1)

− expit(𝑋⊤𝑎,𝑡𝛾)
]

Using the functional delta method and the implicit function theorem, the
efficient influence function of 𝛾 is

𝐼𝐶𝛾 = −
∑
𝑎,𝑡

[
𝜕𝑈 (𝑆, 𝛾)
𝜕𝛾

]−1
𝜕𝑈 (𝑆, 𝛾)
𝜕𝑆𝑎(𝑡)

𝐼𝐶𝑎(𝑡)

where

𝜕𝑈 (𝑆, 𝛾)
𝜕𝛾

=
∑
𝑎,𝑡

𝑆𝑎(𝑡 − 1)
exp(𝑋⊤𝑎,𝑡𝛾)

[1 + exp(𝑋⊤𝑎,𝑡𝛾)]2
𝑋𝑎,𝑡𝑋

⊤
𝑎,𝑡

𝜕𝑈 (𝑆, 𝛾)
𝜕𝑆𝑎(𝑡)

= −𝑋𝑎,𝑡 +𝑋𝑎,𝑡+1

[
1 + exp(𝑋⊤𝑎,𝑡+1𝛾)

]−1
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