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Model Averaging in Factor Analysis: An
Analysis of Olympic Decathlon Data

Michael Schomaker and Christian Heumann

Abstract
This article presents a multivariate analysis of Olympic decathlon data based on maximum

likelihood factor analysis. All results explicitly account for model selection uncertainty, which is
inherent in any data-based selection process but mostly ignored in reports related to multivariate
sports data. For this purpose, some well-established frequentist procedures that have so far been
applied almost exclusively to regression analysis are adopted and transferred to the factor analytical
context. The findings support the claim that decathlon contests consist of three dimensions. These
dimensions seem to be similar to, but not exactly the same, as those found by Cox and Dunn (2002)
via hierarchical cluster analysis.

KEYWORDS: dimension, frequentist procedures, multivariate analysis, averaging techniques,
small samples



1 Introduction

The analysis of athletic contests has always played an important role for statis-
tics in sports. For example, Brown (1946) studied paradoxes in traditional
scoring systems, Chang et al. (2003) suggested a new score awarding method
for decathlon events and Dawkins et al. (1994) analyzed olympic heptathlon
data based on cluster and correspondence analysis.

In this article, we are concerned with results of the olympic decathlon
contest in Athens, August 2004. The decathlon competition consists of ten
track-and-field events run over two consecutive days; these are the 100 m race,
long jump (LJ), shot-put (SP), high jump (HJ), 400 m race, 110 m hurdles
(110 mh), discus (Dis), pole-vault (PV), javeline (Jav) and 1500 m race. The
data are taken from the IAAF (International Amateur Athletic Federation)
website archive and used to perform multivariate methods for dimension re-
duction, namely maximum likelihood factor analysis that explicitly accounts
for model selection uncertainty. We are particulary interested in grouping the
different disciplines to find latent factors which reflect the nature of decathlon
competitions.

Decathlon data sets are typically hard to analyze as they are small, mul-
tidimensional and therefore weak in any structure supported from statistical
methodology. This can be exemplarily seen in the detailed and carefully con-
ducted multivariate description of decathlon data from Cox and Dunn (2002),
where cluster analysis is applied upon five different data sets of decathlon
championships held from 1991 to 1999: here, each data set supports other
combinations of clusters for the ten events and this raises the question how
stable recent findings really are. The problem of an adequate, robust and
good choice for the description of such data relates to a typical model se-
lection problem, whereas model selection uncertainty is obviously apparent
and has to be incorporated fully into any statistical inference subsequent to
a data-based selection step. It is nowadays mostly accepted that this can be
primarily realized by applying model averaging schemes, which is the com-
bination of estimators from many potential models, rather than relying on
traditional model selection estimators. Several methods have been developed
both from a Bayesian (see, e.g., Hoeting et al. (1999)) and frequentist (see,
e.g., Wang et al. (2009)) point of view. Unfortunately these methods were
applied and studied mainly in the context of regression analysis, where due to
interaction effects and a large amount of possible transformations the number
of potentially good models is basically larger than in other statistical fields
such as autoregressive models, signal detection and factor analysis.
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and devise a good and robust model to describe this dimension appropriately.
This relates to a process of reducing the number of variables under considera-
tion to a suitable amount of latent factors having impact on the ten disciplines
of decathlon. For this purpose we use maximum likelihood factor analysis and
account for model selection uncertainty by applying well-developed, frequentist
model averaging schemes.

The balance of this paper begins with the description of frequentist model
averaging techniques and their application in factor analysis in section 2, fol-
lowed by a detailed analysis of the 2004 olympic decathlon data in section 3
and a discussion about methodology, results and alternatives in section 4.

2 Methods

2.1 General Framework

Consider the n×p data matrix X = (X1, . . . , Xp), where Xj = (x1j, . . . , xnj)
′ is

an n×1 vector of values of the jth variable, j = 1, . . . , p, and xi = (xi1, . . . , xip),
an 1 × p vector containing the ith observation of each of the p variables, i =
1, . . . , n. Let X be multivariate distributed with density f(X; θ) ∈ F where
θ is an unknown parameter vector, F = {f(X; θ), θ ∈ Θ} is a parameterized
family of probability distributions and Θ is the corresponding parameter space.

Now, let M = {M1, . . . ,Mk∗} ⊂ F be a set of candidate models to de-
scribe the structure of X appropriately. A model selection procedure is one
that singles out a ”winning” model from the set M on the basis of a data-
based model selection criterion Υ, for instance by choosing the model that
minimizes the information criterion of Akaike (1973), AIC. Typically, all sub-
sequent inference is then conducted within this single chosen model as if it
was given a priori. This approach, though popular in the statisticians’ daily
routine, neglects uncertainty about the model choice. The consequences may
be serious: estimates can be biased and the corresponding standard errors
tend to be underestimated; see Hjort and Claeskens (2003) for a variety of
examples. One possibility to overcome this problem exists in the application
of model averaging, that compromises across some or all models of interest.
Consequently, this results in the compromise estimator

ˆ̄θ =
k∗∑
κ=1

wκθ̂κ (1)

The aim of this paper is to explore the dimension of decathlon competitions
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M. The compromise estimator in (1) may be called a FMA estimator if θ in
each model is estimated by a frequentist principle. It can be seen that any

frequentist model selection (FMS) estimator is a special case of ˆ̄θ by assigning
a value of 1 to a particular wκ and 0 to all other wκ’s. In regard to the weight
choice in (1), Buckland et al. (1997) proposed the following exponential AIC
weights:

wκ =
exp(−1

2
AICκ)∑k∗

κ=1 exp(−1
2
AICκ)

, (2)

where AICκ is the AIC value of model Mκ ∈ M. One may also construct
weights based on values of a cross-validation criterion (Stone (1974)) or the
Focused Information Criterion (Claeskens and Hjort (2003)) scores or by min-
imizing a Mallows criterion as suggested in recent studies by Hansen (2007).
An important limitation of Hansen’s approach, however, is that the optimality
properties regarding the Mallows criterion apply only in the context of linear
regression and not elsewhere.

Approximate standard errors for (1) may be obtained either via bootstrap-
ping or the formula of Buckland et al. (1997),

s.e.(ˆ̄θ) =
k∗∑
κ=1

wκ

√
V̂ar(θ̂κ)− (θ̂κ − ˆ̄θ)2 , (3)

where the first term under the square root reflects sampling uncertainty and
the second one uncertainty due to model selection; see also Burnham and
Anderson (2002) for an insightful discussion on assumptions and correct use
of approximate standard errors in model averaging.

2.2 Model Averaging in Factor Analysis

In the forthcoming analysis we apply maximum likelihood factor analysis and
consider the model

X ′ = Γ(k)F (k) + U , (4)

where X is a n×p matrix of data, Γ(k) is a p×k matrix of loadings, F is a k×n
matrix consisting of k factors and U is the p × n matrix of stochastic errors,
k < p. We assume the matrices F , U and X to be multivariate normal, with
expectation 0 and corresponding covariance matrices I, Ψ = diag(Ψ2

1, . . . ,Ψ
2
p)
′

and Σ = Γ(k)Γ(k)′ + Ψ. Typically, the Ψ2
i , i = 1, . . . , p, are termed as ‘unique-

nesses’.

based on the estimators θ̂κ for each of the candidate models Mκ belonging to
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In the context of factor analysis, the model selection problem relates to the
appropriate choice for the number of latent factors, whereas the frequentist
model averaging scheme compromises between different models that contain
different numbers of factors. We consider the AIC criterion (Akaike (1973),
Akaike (1987))

AIC = −2L(Γ̂(k), Ψ̂) + 2K (5)

where L(·) is the likelihood function, K is the number of parameters and Γ̂(k)

and Ψ̂ are the corresponding ML-estimates. The model Mκ that minimizes
the AIC over M yields the traditional maximum likelihood FMS estimators
Γ̂

(k)
κ and Ψ̂κ. To incorporate model selection uncertainty one may use the

compromise estimator (1) of Γ and Ψ, that is

ˆ̄Γ =
k∗∑
κ=1

wκ Γ̂(k)
κ and ˆ̄Ψ =

k∗∑
κ=1

wκ Ψ̂(k)
κ , (6)

where k∗ is the number of potential models and wκ is given by (2). The
application of (6) guarantees the incorporation of model selection uncertainty,
but only makes sense if we use factor loadings based on the same rotation
principle, for instance a varimax rotation.

It is worthwile to note, that a current working paper of Dunson (2009)
highlights the chances of model averaging in factor analysis from the Bayesian
point of view.

3 Analysis

The complete data with the results of the olympic decathlon is presented in

Table 1 and consists of all 30 athletes who finished the competition. Two
athletes, Eugene Martineau from the Netherlands and Victor Covalenco from
Moldavia, have error trials in the shot-put and pole-vault event, respectively.
These two values may be treated as missing and since it is well-known that the
ignorance of missing observations can lead to biased estimates and may even
lead to the choice of inappropriate models (see, for instance, Schomaker et al.
(2010) and Little and Rubin (2002)) we conduct an imputation for these two
values based on a k-nearest-neighbor methodology: The idea of this procedure
is simple: based on the Euclidian distance one chooses k rows that are nearest
to the row that contains missing values; these k rows must not contain any
missing observation. The missing values in the row under consideration are
then replaced by the average of the observations in these neighboring k rows.
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100m LJ SP HJ 400m 110mh Dis PV Jav 1500m
(sec) (m) (m) (m) (sec) (sec) (m) (m) (m) (sec)

Roman Sebrle (CZE) 10.85 7.84 16.36 2.12 48.36 14.05 48.72 5.00 70.52 280.01
Bryan Clay (USA) 10.44 7.96 15.23 2.06 49.19 14.13 50.11 4.90 69.71 282.00

Dmitriy Karpov (KAZ) 10.50 7.81 15.93 2.09 46.81 13.97 51.65 4.60 55.54 278.11
Dean Macey (GBR) 10.89 7.47 15.73 2.15 48.97 14.56 48.34 4.40 58.46 265.42

Chiel Warners (NED) 10.62 7.74 14.48 1.97 47.97 14.01 43.73 4.90 55.39 278.05
Attila Zsivoczky (HUN) 10.91 7.14 15.31 2.12 49.40 14.95 45.62 4.70 63.45 269.54

Laurent Hernu (FRA) 10.97 7.19 14.65 2.03 48.73 14.25 44.72 4.80 57.76 264.35
Erki Nool (EST) 10.80 7.53 14.26 1.88 48.81 14.80 42.05 5.40 61.33 276.33

Claston Bernard (JAM) 10.69 7.48 14.80 2.12 49.13 14.17 44.75 4.40 55.27 276.31
Roland Schwarzl (AUT) 10.98 7.49 14.01 1.94 49.76 14.25 42.43 5.10 56.32 273.56

Aleksandr Pogorelov (RUS) 10.95 7.31 15.10 2.06 50.79 14.21 44.60 5.00 53.45 287.63
Florian Schönbeck (GER) 10.90 7.30 14.77 1.88 50.30 14.34 44.41 5.00 60.89 278.82

Romain Barras (FRA) 11.14 6.99 14.91 1.94 49.41 14.37 44.83 4.60 64.55 267.09
Marice Smith (JAM) 10.85 6.81 15.24 1.91 49.27 14.01 49.02 4.20 61.52 272.74

Nikolay Averyanov (RUS) 10.55 7.34 14.44 1.94 49.72 14.39 39.88 4.80 54.51 271.02
...

...
...

...
...

...
...

...
...

...
...

Table 1: Results of the Olympic Decathlon in Athens, 23.8./24.8.2004 (Part I)
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100m LJ SP HJ 400m 110mh Dis PV Jav 1500m
(sec) (m) (m) (m) (sec) (sec) (m) (m) (m) (sec)

...
...

...
...

...
...

...
...

...
...

...
Jaako Ojaniemi (FIN) 10.68 7.50 14.97 1.94 49.12 15.01 40.35 4.60 59.26 275.71
Vitaliy Smirnov (UZB) 10.89 7.07 13.88 1.94 49.11 14.77 42.47 4.70 60.88 263.31

Haifeng Qi (CHN) 11.06 7.34 13.55 1.97 49.65 14.78 45.13 4.50 60.79 272.63
Stefan Drews (GER) 10.87 7.38 13.07 1.88 48.51 14.01 40.11 5.00 51.53 274.21

Aleksandr Parkhomenko (BLR) 11.14 6.61 15.69 2.03 51.04 14.88 41.90 4.80 65.82 277.94
Paul Terek (USA) 10.92 6.94 15.15 1.94 49.56 15.12 45.62 5.30 50.62 290.36

David Gomez (ESP) 11.08 7.26 14.57 1.85 48.61 14.41 40.95 4.40 60.71 269.70
Indrek Turi (EST) 11.08 6.91 13.62 2.03 51.67 14.26 39.83 4.80 59.34 290.01

Santiago Lorenzo (ARG) 11.10 7.03 13.22 1.85 49.34 15.38 40.22 4.50 58.36 263.08
Janis Karlivans (LAT) 11.33 7.26 13.30 1.97 50.54 14.98 43.34 4.50 52.92 278.67

Prodromos Korkizoglou (GRE) 10.86 7.07 14.81 1.94 51.16 14.96 46.07 4.70 53.05 317.00
Hans Olav Uldal (NOR) 11.23 6.99 13.53 1.85 50.95 15.09 43.01 4.50 60.00 281.70

Paolo Casarsa (ITA) 11.36 6.68 14.92 1.94 53.20 15.39 48.66 4.40 58.62 296.12
Eugene Martineau (NED) 10.99 6.84 – 2.00 49.10 15.02 40.00 4.80 63.62 271.79

Victor Covalenco (MDA) 11.28 7.20 13.04 1.85 51.82 15.80 38.19 – 53.46 263.81

Table 1: Results of the Olympic Decathlon in Athens, 23.8./24.8.2004 (Part II)
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Due to the small sample size we find this procedure preferable to parametric
imputation approaches, such as an EM-algorithm based imputation. Using a
rule of thumb for small data, we take k = 2 and obtain imputed values of
14.41 meter for the shot-put result of Eugene Martineau and 4.65 meter for
the pole-vault result of Victor Covalenco. The new, updated data set that
contains the imputed values is used for the forthcoming analysis.

Based on the multivariate description of decathlon data from Cox and
Dunn (2002), individual considerations, and an explorative look at the data
we consider five competing models to capture the structure of the data: these
are all factor analytical models X ′ = Γ(k)F (k) +U , k = 1, . . . , 5, where X is the
30× 10 matrix of the decathlon results, Γ(k) is the 10× k matrix of loadings,
F is a k × 30 matrix consisting of k factors and U is the 10 × 30 matrix of
stochastic errors. We use the statistical software package R (R Development
Core Team (2008, Version 2.8.1)) to perform the analysis1 and calculate the
AIC2 and the corresponding AIC weights for each of the five models3. The
results are presented in Table 2.

M1 M2 M3 M4 M5

AIC -12.85 -24.90 -25.77 -18.32 -8.50
Weights 0.00 0.39 0.60 0.01 0.00

Table 2: AIC and AIC weights for the five competing models

It is clear that the 3-factor model M3 has the minimum AIC value (−25.77)

and its maximum likelihood parameter estimates Γ̂
(3)
3 and Ψ̂3 would be chosen

from the corresponding frequentist model selection procedure. However, the
2-factor model has only a slightly larger AIC value (−24.90) and a look at
the corresponding AIC weights, 0.39 for M2 and 0.60 for M3, confirms that
both the 2- and the 3-factor model have a considerable appeal to describe the

1The exact results of any maximum likelihood factor analysis depend on the utilized
optimization techniques and therefore may vary slightly depending on the software used
by the statistical analyst. Especially when confronted with Heywood cases (where one or
more uniquenesses – the diagonal elements of Ψ - are essentially zero) this can be observed
regularly

2There exist small sample corrections for the AIC (Sugiura (1978), Hurvich and Tsai
(1989)). Since they are not valid in the context of factor analysis we use the traditional
non-corrected AIC

3Most statistical software packages do not provide Akaikes Information Criterion (AIC)
in the context of factor analysis. However, via the relationship of the AIC to the χ2-statistic
(see Akaike (1987, p. 321)) it can be calculated easily using standard statistical software
packages like R, S-Plus and others’
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structure of the data appropriately. The factor analytical models that contain
one, four or even five factors seem to be of no practical importance as can be
clearly seen from Table 2.

The matrix of the estimated loadings (after a varimax rotation) and the
corresponding estimated uniquenesses of the 2-, 3- and 4-factor model are
presented in Tables 3, 4 and 5; all elements γii ∈ Γ that are greater 0.5 are
underlined.

Loadings Γ Ψ2
i

100 m 0.79 -0.31 0.00 0.00 0.00 0.28
Long Jump -0.79 0.10 0.00 0.00 0.00 0.37

Shot Put -0.16 0.94 0.00 0.00 0.00 0.09
High Jump -0.24 0.64 0.00 0.00 0.00 0.53

400 m 0.79 -0.15 0.00 0.00 0.00 0.36
110 m Hurdles 0.63 -0.29 0.00 0.00 0.00 0.51

Discus -0.16 0.72 0.00 0.00 0.00 0.46
Pole-Vault -0.27 -0.03 0.00 0.00 0.00 0.93

Javeline -0.01 0.41 0.00 0.00 0.00 0.83
1500 m 0.25 0.26 0.00 0.00 0.00 0.87

Table 3: Matrix of loadings and uniquenesses, 2-factor model

Loadings Γ Ψ2
i

100 m 0.83 -0.27 -0.07 0.00 0.00 0.23
Long Jump -0.78 0.10 -0.03 0.00 0.00 0.39

Shot Put -0.19 0.91 0.08 0.00 0.00 0.14
High Jump -0.23 0.66 -0.03 0.00 0.00 0.52

400 m 0.77 -0.17 0.38 0.00 0.00 0.23
110 m Hurdles 0.63 -0.29 0.00 0.00 0.00 0.52

Discus -0.18 0.72 0.20 0.00 0.00 0.41
Pole-Vault -0.32 -0.10 0.24 0.00 0.00 0.83

Javeline 0.04 0.46 -0.29 0.00 0.00 0.70
1500 m 0.12 0.16 0.98 0.00 0.00 0.00

Table 4: Matrix of loadings and uniquenesses, 3-factor model

A close look at the results of the 2-factor model M2 yields the following
evidence: All short distance races as well as long jump are loading high on
the first factor. This may be interpreted as a speed, athletic and liveliness
component of the decathlon contest. On the contrary, it is mainly shot-put,
high jump and discus that are loading high on the second factor, which could be
taken as a summary of strength-and-technique events. Of course, the javeline
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Loadings Γ Ψ2
i

100 m 0.82 -0.25 -0.08 0.24 0.00 0.20
Long Jump -0.81 0.03 -0.02 -0.01 0.00 0.35

Shot Put -0.21 0.96 0.18 -0.02 0.00 0.00
High Jump -0.29 0.59 0.07 0.09 0.00 0.55

400 m 0.77 -0.19 0.37 0.04 0.00 0.24
110 m Hurdles 0.65 -0.22 -0.03 0.01 0.00 0.52

Discus -0.34 0.59 0.37 0.62 0.00 0.00
Pole-Vault -0.24 -0.05 0.17 -0.44 0.00 0.72

Javeline 0.00 0.47 -0.22 0.09 0.00 0.72
1500 m 0.12 0.05 0.98 -0.10 0.00 0.00

Table 5: Matrix of loadings and uniquenesses, 4-factor model

event also has a certain contribution to the second factor. But as we look at
the uniquenesses, we find that most of its variance cannot explained by the
two factors. Therefore such a kind of interpretation has to be handled with
care. Both pole-vault and the 1500 m race are not loading high on any of the
two factors which is reflected in the corresponding large uniquenesses.

The 3-factor model, which is slightly favored from the AIC, relates to
similar statements. The first and the second factor may be interpreted as
above. However, in regard to the third factor, one can see that it is only the
1500 m race that is loading high on it. A possible interpretation might be that
the third factor reflects endurance, which is supported from the loading of the
400 m race (0.38). However, it is well known that results from the 1500 m race
are different from the other nine events since it is the last one and each athlete
knows about his possible success and is clearly affected by that4. Therefore,
the third factor might also be seen as a ‘last-event-effect’.

The 4-factor model is not well-supported by the Akaike criterion. A look at
the estimated loadings in Table 5 confirms that with regards to content. The
first three factors are basically the same as in the 3-factor model. Moreover,
it is mainly the discus event that is loading high on the fourth factor, which
is – no doubt – dispensable and unnecessary.

However, based on the thoughts of section 2 we are interested in incorpo-
rating model selection uncertainty in our final estimations of Γ and Ψ. We
therefore calculate the compromise estimators (6) as illustrated in Table 6.

A close look at the table still supports the assumption of three strong fac-
tors in decathlon competitions - despite the remarkable evidence of a 2-factor

4A famous example is Bryan Clay from the United States, who dominated the 2008
olympic decathlon in Beijing in the first nine events. Being sure to win, he came in last in
the 1500 m race
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Loadings Γ̄ Ψ̄2
i

100 m 0.81 -0.29 -0.05 0.00 0.00 0.25
Long Jump -0.78 0.10 -0.02 0.00 0.00 0.38

Shot Put -0.18 0.92 0.05 0.00 0.00 0.12
High Jump -0.23 0.65 -0.01 0.00 0.00 0.52

400 m 0.78 -0.16 0.24 0.00 0.00 0.28
110 m Hurdles 0.63 -0.29 0.00 0.00 0.00 0.52

Discus -0.17 0.72 0.13 0.01 0.00 0.42
Pole-Vault -0.30 -0.07 0.15 -0.01 0.00 0.87

Javeline 0.02 0.44 -0.18 0.00 0.00 0.75
1500 m 0.17 0.19 0.60 0.00 0.00 0.34

Table 6: Weighted matrix of loadings and uniquenesses that incorporate model
selection uncertainty

model. Hence, the final results are similar to the model selection estimator
from the three factor model:

• The first factor contains essentially 100 m, 400 m, 110 m hurdles and
long jump. This may reflect the speed-and-athletic component of the
decathlon contest.

• The second factor contains essentially shot-put, high jump and discus.
This may reflect the strength-and-technique component of the decathlon
contest.

• The third factor contains essentially the 1500 m race. This may reflect
endurance as well as the special status of the last event.

• Both javeline and pole-vault do not load high on any of these three factors
and are high in their uniquenesses. One possible explanation relates to
the claim that these events are the most sophisticated and demanding
within a decathlon contest.

Effectively, the support of three distinctive factors lies in correspondence
with the final results of the cluster analysis of Cox and Dunn (2002)5; see also
Table 7. However, although the first factor of our analysis complies with the
first cluster of Cox and Dunn (2002), the second and third do not. The main
difference is the pattern of the third cluster, which Cox and Dunn (2002)
claim to contain both the 1500 m race and the high jump. Though somewhat
supported by the data, it is questionable whether such a cluster makes sense.

5For further insightful thoughts regarding the results from Cox and Dunn (2002) see
Woolf et al. (2007)

10

Journal of Quantitative Analysis in Sports, Vol. 7 [2011], Iss. 1, Art. 4

http://www.bepress.com/jqas/vol7/iss1/4
DOI: 10.2202/1559-0410.1249



Of course, cluster analysis is a different methodology in multivariate statis-
tics and obviously has to account for all ten events. Therefore both the javeline
and pole-vault event are contained in cluster 2, which makes more sense than
to be contained in any of the other 2 clusters and this is not in direct contra-
diction to our results.

Cluster 1 110 m 400 m long jump 110 m hurdles
Cluster 2 shot-put discus javeline pole-vault
Cluster 3 high jump 1500 m

Table 7: Final results of the cluster analysis from Cox and Dunn (2002, p.
181)

4 Discussion

The aim of this article, as mentioned above, is to explore the dimension of
decathlon contests by example of the olympic data from Athens 2004. Our
approach is based on maximum likelihood factor analysis and explicitly ac-
counts for the uncertainty associated with the determination of the number of
latent factors by means of modern frequentist model averaging techniques.

It is found that the data supports three distinctive factors. One possible in-
terpretation relates to a ‘speed-and-athletic’ factor, a ‘strength-and-technique’
factor and a ‘last-event’ factor. Both the javeline and the pole-vault event do
not contribute much to these factors. Of course, all kind of metaphorical
interpretations in factor analysis have to be handled with care.

It would be interesting to think of other possible extensions for grouping
decathlon disciplines. It is well-known that a restriction of conventional factor
analytical approaches is that no covariates, such as age and origin of athletes,
can be included into the model and the estimation process. Hence, latent
variable models, as for example in Fahrmeir and Raach (2007), offer an inter-
esting opportunity to broaden our knowledge about the nature of decathlon
competitions and revise existing results.

Despite these future challenges, our study has offered some interesting in-
sights into some very practical questions on the dimension of decathlon con-
tests and the treatment of modeling uncertainty that certainly warrant further
studies.
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