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Abstract: This paper describes a targeted maximum likelihood estimator (TMLE) for the parameters of
longitudinal static and dynamic marginal structural models. We consider a longitudinal data structure
consisting of baseline covariates, time-dependent intervention nodes, intermediate time-dependent covari-
ates, and a possibly time-dependent outcome. The intervention nodes at each time point can include a
binary treatment as well as a right-censoring indicator. Given a class of dynamic or static interventions, a
marginal structural model is used to model the mean of the intervention-specific counterfactual outcome as
a function of the intervention, time point, and possibly a subset of baseline covariates. Because the true
shape of this function is rarely known, the marginal structural model is used as a working model. The
causal quantity of interest is defined as the projection of the true function onto this working model. Iterated
conditional expectation double robust estimators for marginal structural model parameters were previously
proposed by Robins (2000, 2002) and Bang and Robins (2005). Here we build on this work and present a
pooled TMLE for the parameters of marginal structural working models. We compare this pooled estimator
to a stratified TMLE (Schnitzer et al. 2014) that is based on estimating the intervention-specific mean
separately for each intervention of interest. The performance of the pooled TMLE is compared to the
performance of the stratified TMLE and the performance of inverse probability weighted (IPW) estimators
using simulations. Concepts are illustrated using an example in which the aim is to estimate the causal
effect of delayed switch following immunological failure of first line antiretroviral therapy among HIV-
infected patients. Data from the International Epidemiological Databases to Evaluate AIDS, Southern Africa
are analyzed to investigate this question using both TML and IPW estimators. Our results demonstrate
practical advantages of the pooled TMLE over an IPW estimator for working marginal structural models for
survival, as well as cases in which the pooled TMLE is superior to its stratified counterpart.
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1 Introduction

Many studies aim to learn about the causal effects of longitudinal exposures or interventions using data in
which these exposures are not randomly assigned. Specifically, consider a study in which baseline
covariates, time-varying exposures or treatments, time-varying covariates, and an outcome of interest,
such as death, are observed on a sample of subjects followed over time. The exposures of interest can
both depend on past covariates and affect future covariates, as well as the outcome. Censoring may also
occur, possibly in response to past treatment and covariates. Such data structures are ubiquitous in
observational cohort studies. For example, a sample of HIV-infected patients might be followed long-
itudinally in clinic and data collected on antiretroviral prescriptions, determinants of prescription decisions
including CD4þ T cell counts and plasma HIV RNA levels (viral loads), and vital status. Such data
structures also occur in randomized trials when the exposure of interest is (non-random) compliance
with a randomized exposure or includes non-randomized mediators of an exposure’s effect.

The causal effects of longitudinal exposures (as well as the effects of single time point exposures when
the outcome is subject to censoring) can be formally defined by contrasting the distribution of a counter-
factual outcome under different “interventions” to set the values of the exposure and censoring variables.
For example, the counterfactual survival curve of HIV-infected subjects following immunological failure of
antiretroviral therapy might be contrasted under a hypothetical intervention in which all subjects were
switched immediately to a new antiretroviral regimen versus an intervention in which all subjects remained
on their failing therapy [1]. In the presence of censoring due to losses to follow up, these counterfactuals of
interest might be defined under a further intervention to prevent censoring. Interventions such as these,
under which all subjects in a population are deterministically assigned the same vector of exposure and
censoring decisions (for example, do not switch and remain under follow up) are referred to as “static
regimes.”

More generally, counterfactuals can be defined under interventions that assign a treatment or exposure
level to each subject at each time point based on that subject’s observed past. For example, counterfactual
survival might be compared under interventions to switch all patients to second line antiretroviral therapy
the first time their CD4þT cell count crosses a certain threshold, for some specified set of thresholds [2].
Such subject-responsive treatment strategies have been referred to as individualized treatment rules,
adaptive treatment strategies, or “dynamic regimes” (see, for example, Robins [3]; Murphy et al. [4];
Hernan et al. [5]). Additional examples include strategies for deciding when to start antiretroviral therapy
[6, 7] and strategies for modifying dose or drug choice based on prior response and adverse effects.
Investigation of the effects of such dynamic regimes makes it possible to learn effective strategies for
assigning an intervention based on a subject’s past and is thus relevant to any discipline that seeks to learn
how best to use past information to make decisions that will optimize future outcomes.

The static and dynamic regimes described above are longitudinal – they involve interventions to set the
value of multiple treatment and censoring variables over time. For example, counterfactual survival under
no switch to second line therapy corresponds to a subject’s survival under an intervention to prevent a
patient from switching at each time point from immunologic failure until death or the end of the study. A
time-dependent causal dose–response curve, which plots the mean of the intervention-specific counter-
factual outcome at time t as a function of the interventions through time t, can be used to summarize the
effects of these longitudinal interventions. For example, a plot of the counterfactual survival probability as
a function of time since immunologic failure, for a range of alternative CD4þ T cell count thresholds used to
initiate a switch captures the effect of alternative switching strategies on survival.

Formal causal frameworks provide a tool to establish the conditions under which such causal dose–
response curves can be identified from the observed data. Longitudinal static and dynamic regimes are often
subject to time-dependent confounding – time-varying variables may confound the effect of future treatments
while being affected by past treatment [8]. Traditional approaches to the identification of point treatment
effects, which are based on selection of a single set of covariates for regression or stratification-based
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adjustment, break down when such time-dependent confounding is present. However, the mean counter-
factual outcome under a longitudinal static or dynamic regime may still be identified under the appropriate
sequential randomization and positivity assumptions (reviewed in Robins and Hernan [9]).

Under these assumptions, causal dose–response curves can be estimated by generating separate
estimates of the mean counterfactual outcome for each time point and intervention (or regime) of interest.
For example, one could generate separate estimates of the counterfactual survival curve for each CD4-based
threshold for switching to second line therapy. In this manner, one obtains fits of the time-dependent
causal dose–response curve for each of a range of possible thresholds, which together summarize how the
mean counterfactual outcome at time t depends on the choice of threshold.

A number of estimators can be used to estimate intervention-specific mean counterfactual outcomes. These
include inverse probability weighted (IPW) estimators (for example, [3, 5, 10]), “G-computation” estimators
(typically based on parametric maximum likelihood estimation of the non-intervention components of the data
generating process) (for example, [7, 11, 12]), augmented-IPW estimators (for example, [13–16, 31]), and targeted
maximum likelihood (or minimum loss) estimators (TMLEs) (for example, [17, 18]). In particular, van der Laan
and Gruber [19] combine the targeted maximum likelihood framework [20, 21] with important insights and the
iterated conditional expectation estimators established in Robins [3, 29] and Bang and Robins [22].

Both the theoretical validity and the practical utility of these estimators rely, however, on reasonable
support for each of the interventions of interest, both in the true data generating distribution and in the
sample available for analysis. For example, in order to estimate how survival is affected by the threshold
CD4 count used to initiate an antiretroviral treatment switch, a reasonable number of subjects must in fact
switch at the time indicated by each threshold of interest. Without such support, estimators of the
intervention-specific outcome will be ill-defined or extremely variable. Although one might respond to
this challenge by creating coarsened versions of the desired regimes, so that sufficient subjects follow each
coarsened version, such a method introduces bias and leaves open the question of how to choose an
optimal degree of coarsening.

Since adequate support for every intervention of interest is often not available, Robins [23] introduced
marginal structural models (MSMs) that pose parametric or small semiparametric models for the counter-
factual conditional mean outcome as a function of the choice of intervention and time. For example, static
MSMs have been used to summarize how the counterfactual hazard of death varies as a function of when
antiretroviral therapy is initiated [24] and when an antiretroviral regimen is switched [25]. The extrapolation
assumptions implicitly defined by non-saturated MSMs make it possible to estimate the coefficients of the
model, and thereby the causal dose–response curve, even when few or no subjects follow some interven-
tions of interest.

While MSMs were originally developed for static interventions [8, 10, 23, 24] they naturally generalize to
classes of dynamic (or even more generally, stochastic) interventions as shown in van der Laan and
Petersen [2] and Robins et al. [26]. Dynamic MSMs have been used, for example, to investigate how
counterfactual hazard of death varies as a function of CD4þ T cell count threshold used to initiate
antiretroviral therapy [6] or to switch antiretroviral therapy regimens [2]. Because the true shape of the
causal dose–response curve is typically unknown, we have suggested that MSMs be used as working
models. The target causal coefficients can then be defined by projecting the true causal dose–response
curve onto this working model [20, 27].

The coefficients of both static and dynamic MSMs are frequently estimated using IPW estimators [2, 8,
10, 26]. These estimators have a number of attractive qualities: they can be intuitively understood, they are
easy to implement, and they provide an influence curve-based approach to standard error estimation.
However, IPW estimators also have substantial shortcomings. In particular, they are biased if the treatment
mechanism used to construct the weights is estimated poorly (for example, using a misspecified parametric
model). Further, IPW estimators are unstable in settings of strong confounding (near or partial positivity
violations) and the resulting bias in both point and standard error estimates can result in poor inference (for
a review of this issue see Petersen et al. [28]). Dynamic MSMs can exacerbate this problem, as the options
for effective weight stabilization are limited [6, 26].
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Asymptotically efficient and double robust augmented-IPW estimators of the estimand corresponding
to longitudinal static MSM parameters were developed by Robins and Rotnitzky [14], Robins [13], Robins
et al. [16]. These estimators are defined as a solution of an estimating equation, and as a result may be
unstable due to failure to respect the global constraints implied by the model and the parameter. Robins
[13, 29] and Bang and Robins [22] introduced an alternative double robust estimating equation-based
estimator of longitudinal MSM parameters based on the key insight that both the statistical target parameter
and the corresponding augmented-IPW estimating function (efficient influence curve) for MSMs on the
intervention-specific mean can be represented as a series of iterated conditional expectations. In addition,
they proposed a targeted sequential regression method to estimate the nuisance parameters of the aug-
mented-IPW estimating equation. This innovative idea allowed construction of a double robust estimator
that relies only on estimation of minimal nuisance parameters beyond the treatment mechanism.

In this paper, we describe a double robust substitution estimator of the parameters of a longitudinal
marginal structural working model. The estimator presented incorporates the key insights and prior
estimator of Robins [13, 29] and Bang and Robins [22] into the TMLE framework. Specifically, we expand
on this prior work in several ways. We propose a TMLE for marginal structural working models for
longitudinal dynamic regimes, possibly conditional on pre-treatment covariates. The TMLE described is
defined as a substitution estimator rather than as solution to an estimating equation and incorporates data-
adaptive/machine learning methods in generating initial fits of the sequential regressions. Finally, we
further generalize the TMLE to apply to a larger class of parameters defined as arbitrary functions of
intervention-specific means across a user-supplied class of interventions.

TMLE for the parameters of a MSM for “point treatment” problems, in which adjustment for a single set of
covariates known not to be affected by the intervention of interest is sufficient to control for confounding,
including history-adjusted MSMs, have been previously described [30, 31]. However, the parameter of a
longitudinal MSM on the intervention-specific mean under sequential interventions subject to time-dependent
confounding is identified as a distinct, and substantially more complex, estimand than the estimand corre-
sponding to a point treatment MSM, and thus requires distinct estimators. An alternative TMLE for longitudinal
static MSMs, which we refer to as a stratified TMLE, was described by Schnitzer et al. [32]. The stratified TMLE
uses the longitudinal TMLE of van der Laan and Gruber [19] for the intervention-specific mean to estimate each
of a set of static treatments and combines these estimates into a fit of the coefficients of a static longitudinal
MSM on both survival and hazard functions. The stratified TMLE [32] resulted in substantially lower standard
error estimates than an IPW estimator in an applied data analysis and naturally generalizes to dynamic MSMs.
However, it remains vulnerable when there is insufficient support for some interventions of interest. In
contrast, the TMLE we describe here pools over the set of dynamic or static interventions of interest as well
as optionally over time when updating initial fits of the likelihood. It thus substantially relaxes the degree of
data support required to remain an efficient double robust substitution estimator.

In summary, a large class of causal questions can be formally defined using static and dynamic
longitudinal MSMs, and the parameters of these models can be identified from non-randomized data
under well-studied assumptions. This article describes a TMLE that builds on the work of Robins [13, 29]
and Bang and Robins [22] in order to directly target the coefficients of a marginal structural (working) model
for a user-supplied class of longitudinal static or dynamic interventions. The theoretical properties of the
pooled TMLE are presented, its implementation is reviewed, and its practical performance is compared to
alternatives using both simulated and real data. R code [33] implementing the estimator and evaluating it in
simulations is provided in online supplementary materials and as an open source R library ltmle [34].

1.1 Organization of paper

In Section 2, we define the observed data and a statistical model for its distribution. We then specify a non-
parametric structural equation model for the process assumed to generate the observed data. We define
counterfactual outcomes over time based on static or dynamic interventions on multiple treatment and
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censoring nodes in this system of structural equations. Our target causal quantity is defined using a
marginal structural working model on the mean of these intervention-specific counterfactual outcomes at
time t. The general case we present includes marginal structural working models on both the counterfactual
survival and the hazard. We briefly review the assumptions under which this causal quantity is identified as
a parameter of the observed data distribution. The statistical estimation problem is thus defined in terms of
the statistical model and statistical target parameter.

Section 3 presents the TMLE defined by (a) representation of the statistical target parameter in terms of
an iteratively defined set of conditional mean outcomes, (b) an initial estimator for the intervention
mechanism and for these conditional means, (c) a submodel through this initial estimator and a loss
function chosen so that the generalized score of the submodel with respect to this loss spans the efficient
influence curve, (d) a corresponding updating algorithm that updates the initial estimator and iterates the
updating till convergence, and (e) final evaluation of the TMLE as a plug-in estimator. We also present
corresponding influence curve-based confidence intervals for our target parameter.

Section 4 illustrates the results presented in Section 3 using a simple three time point example and
focusing on a marginal structural working model for counterfactual survival probability over time. This
example is used to clarify understanding of notation and to provide a step-by-step overview of implementa-
tion of the pooled TMLE.

Section 5 compares the pooled TMLE described in this paper with alternative estimators for the
parameters of longitudinal dynamic MSMs for survival. We provide a brief overview of the stratified
TMLE [32], discuss scenarios in which each estimator may be expected to offer superior performance, and
illustrate the breakdown of the stratified TMLE in a finite sample setting in which some interventions of
interest have no support. As IPW estimators are currently the most common approach used to fit long-
itudinal dynamic MSMs, we also discuss two IPW estimators for these parameters.

Section 6 presents a simulation study in which the pooled TMLE is implemented for a marginal
structural working model for survival at time t. Its performance is compared to IPW estimators and to the
stratified TMLE for a simple data generating process and in a simulation designed to be similar to the data
analysis presented in the following section, which includes time-dependent confounding and right
censoring.

Section 7 presents the results of a data analysis investigating the effect of switching to second line
therapy following immunologic failure of first line therapy using data from HIV-infected patients in the
International Epidemiological Databases to Evaluate AIDS (IeDEA), Southern Africa. Throughout the paper,
we illustrate notation and concepts using a simplified data structure based on this example.

Appendices contain a derivation of the efficient influence curve, further simulation details, an alter-
native TMLE, and reference table for notation. In online supplementary files, we present R code that
implements the pooled TMLE, the stratified TMLE, and two IPW estimators for a marginal structural
working model of survival. A corresponding publicly available R-package, ltmle, was released in May
2013 (http://cran.r-project.org/web/packages/ltmle/).

2 Definition of statistical estimation problem

Consider a longitudinal study in which the observed data structure O on a randomly sampled subject is
coded as

O ¼ Lð0Þ;Að0Þ; . . . ; LðKÞ;AðKÞ; LðK þ 1Þð Þ;
where Lð0Þ are baseline covariates, AðtÞ denotes an intervention node at time t, and LðtÞ denotes covariates
measured between intervention nodes Aðt � 1Þ and AðtÞ. Assume that there is an outcome process
YðtÞ � LðtÞ for t ¼ 1; . . . ;K þ 1, where LðK þ 1Þ ¼ YðK þ 1Þ is the final outcome measured after the final
treatment AðKÞ. The intervention node AðtÞ ¼ ðA1ðtÞ;A2ðtÞÞ has a treatment node A1ðtÞ and a censoring
indicator A2ðtÞ, where A2ðtÞ ¼ 1 indicates that the subject is right censored by time t. We observe n
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independent and identically distributed (i.i.d.) copies O1; . . . ;On of O, and we will denote the probability
distribution of O with PO;0, or more simply, as P0. Throughout, we use subscript 0 to denote the true
distribution.

Running example. Here and in subsequent sections, we illustrate notation using an example in which
n i.i.d. HIV-infected subjects with immunological failure on first line therapy are sampled from some target
population. Here t ¼ 0 denotes time of immunological failure. LðtÞ denotes time-varying covariates, and
includes CD4þ T cell count at time t and YðtÞ, an indicator of death by time t. In addition to baseline values
of these time-varying covariates, Lð0Þ includes non-time-varying covariates such as sex. The intervention
nodes of interest are AðtÞ; t ¼ 0; . . .K, where AðtÞ is defined as an indicator of switch to second line therapy
by time t; in our simplified example, we assume no right censoring. For notational convenience, after a
subject dies all variables for that subject are defined as equal to their last observed value.

2.1 Statistical model

We use the notation �LðkÞ ¼ ðLð0Þ; . . . ; LðkÞÞ to denote the history of time-dependent variable L from

t ¼ 0; . . . ; k. Define the “parents” of a variable LðkÞ, denoted PaðLðkÞÞ, as those variables that precede LðkÞ
(i.e., PaðLðkÞÞ ¼ �Lðk � 1Þ; �Aðk � 1Þ). Similarly, �AðkÞ ¼ ðAð0Þ; . . . ;AðkÞÞ is used to denote the history of the
intervention process and PaðAðkÞÞ to denote a specified subset of the variables that precede AðkÞ such that the
distribution of AðkÞ given the whole past is equal to the distribution of AðkÞ given its parents

(PaðAðkÞÞ � �LðkÞ; �Aðk � 1Þ). Under our causal model, which we introduce below, these parent sets PaðLðkÞÞ
and PaðAðkÞÞ correspond to the set of variables that may affect the values taken by LðkÞ and AðkÞ, respectively.

We use QLðkÞ;0 to denote the conditional distribution of LðkÞ, given PaðLðkÞÞ, and, gAðkÞ;0 to denote the

conditional distribution of AðkÞ, given PaðAðkÞÞ. We also use the notation: g0:k ;
Qk

j¼0 gAðjÞ;0, g0 ; g0:K and

define Q0:k ;
Qk

j¼0 QLðjÞ;0 and Q0 ;Q0:Kþ1. In our example, QLðkÞ;0 denotes the joint conditional distribution of

CD4 count and death at time k, given the observed past (including past CD4 count and switching history), and

gAðkÞ;0 denotes the conditional probability of having switched to second line by time k given the observed past

(deterministically equal to one for those time points at which a subject has already switched).
The probability distribution P0 of O can be factorized according to the time-ordering as

P0ðOÞ ¼
YKþ1

k¼0

P0 LðkÞjPa LðkÞð Þð Þ
YK
k¼0

P0 AðkÞjPa AðkÞð Þð Þ

¼
YKþ1

k¼0

QLðkÞ;0ðOÞ
YK
k¼0

gAðkÞ;0ðOÞ

¼ Q0ðOÞg0ðOÞ:

We consider a statistical model M for P0 that possibly assumes knowledge on the intervention mechanism
g0. For example, the treatment of interest, such as switch time, may be known to be randomized, or to be
assigned based on only a subset of the observed past. If Q is the set of all values for Q0 and G the set of
possible values of g0, then this statistical model can be represented as M ¼ fP ¼ Qg : Q 2 Q; g 2 Gg. In
this statistical model, Q puts no restrictions on the conditional distributions QLðkÞ;0, k ¼ 0; . . . ;K þ 1.

2.2 Causal model and counterfactuals of interest

By specifying a structural causal model [35, 36] or equivalently, a system of non-parametric structural
equations, it is assumed that each component of the observed longitudinal data structure (e.g. AðkÞ or LðkÞ)
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is a function of a set of observed parent variables and an unmeasured exogenous error term. Specifically,
consider the non-parametric structural equation model (NPSEM) defined by

LðkÞ ¼ fLðkÞ Pa LðkÞð Þ;ULðkÞ
� �

; k ¼ 0; . . . ;K þ 1 ;

and

AðkÞ ¼ fAðkÞ Pa AðkÞð Þ;UAðkÞ
� �

k ¼ 0; . . . ;K ;

in terms of a set of deterministic functions ðfLðkÞ : k ¼ 0; . . . ;K þ 1Þ; ðfAðkÞ : k ¼ 0; . . . ;KÞ, and a vector of
unmeasured random errors or background factors U ¼ ðULð0Þ; . . . ;ULðKþ1Þ;UAð0Þ; . . . ;UAðKÞÞ [35, 36].

To continue our HIV example, we might specify a causal model in which both time-varying CD4 count,
death, and the decision to switch potentially depended on a subject’s entire observed past, as well as
unmeasured factors. Alternatively, if we knew that switching decisions were made only in response to a
subject’s most recent CD4 count and baseline covariates, the parent set of AðkÞ could be restricted to
exclude earlier CD4 count values.

This causal model represents a model MF for the distribution of ðO;UÞ and provides a parameterization
of the distribution of the observed data structure O in terms of the distribution of the random variables
ðO;UÞ modeled by the system of structural equations. Let PO;U;0 denote the latter distribution. The causal
model MF encodes knowledge about the process, including both measured and unmeasured variables, that
generated the observed data. It also implies a model for the distribution of counterfactual random variables
under specific interventions on (or changes to) the observed data generating process. Specifically, a post-
intervention (or counterfactual) distribution is defined as the distribution that O would have had under a
specified intervention to set the value of the intervention nodes �A ¼ ðAð0Þ; . . . ;AðKÞÞ.

The intervention of interest might be static, with fAðkÞ; k ¼ 0; . . . ;K replaced by some constant for all
subjects. For example, an intervention to set AðkÞ ¼ 0 for k ¼ 0; . . . ;K corresponds to a static intervention
to delay switching indefinitely for all subjects. Alternatively, the intervention might be dynamic, with
fAðkÞ; k ¼ 0; . . . ;K replaced by some specified function dkð�LðkÞÞ of a subject’s observed covariates.
For example, an intervention could set AðkÞ to 1 the first time a subject’s CD4 count drops below some
threshold. As static regimes are a special case of dynamic regimes, in the following sections we define the
statistical estimation problem and develop our estimator for the more general dynamic case. Throughout,
we use “rule” to refer to a specific intervention, static or dynamic, that sets the values of �A.

Given a rule d, the counterfactual random variable Ld ¼ ðLð0Þ; Ldð1Þ; . . . ; LdðK þ 1ÞÞ is defined by deter-
ministically setting all the AðkÞ nodes equal to dkð�LðkÞÞ in the system of structural equations. The probability
distribution of this counterfactual Ld is called the post-intervention or counterfactual distribution of L and is
denoted with Pd;0. Causal effects are defined as parameters of a collection of post-intervention distributions
under a specified set of rules. For example, we might compare mean counterfactual survival over time under a
range of possible switch times.

2.3 Marginal structural working model

Our causal quantity of interest is defined using a marginal structural working model to summarize how the
mean counterfactual outcome at time t varies as a function of the intervention rule d, time point t, and
possibly some baseline covariate V that is a function of the collection of all baseline covariates Lð0Þ.
Specifically, given a class of dynamic treatment rules D, we can define a true time-dependent causal dose–
response curve ðEPd;0ðYdðtÞjVÞ : d 2 D; t 2 τÞ for some subset τ � f1; . . . ;K þ 1g. Note that choice of V (as
well as choice of τ and D) depends on the scientific question of interest. In many cases V will be defined as
the empty set. In other cases, it may be of interest to estimate how the causal dose–response curve varies
depending on the value of some subset of baseline variables.

We specify a working model Θ; fmβ : βg for this true time-dependent causal dose–response curve. Our
causal quantity of interest is then defined as a projection of the true causal dose–response curve onto this

M. Petersen et al.: TMLE for Dynamic Marginal Structural Models 153

Brought to you by | University of Cape Town Libraries
Authenticated

Download Date | 10/23/14 2:57 PM



working model, which yields a definition mβ0 representing this projection. For example, if YðtÞ 2 ½0; 1�, we
may use a logistic working model Logit mβðd; t;VÞ ¼

PJ
j¼1 βjfjðd; t;VÞ for a set of basis functions, and

define our causal quantity of interest as

ΨFðPO;U;0Þ ¼ argmin
β

�E0

X
t2τ
X

d2D hðd; t;VÞ YdðtÞ logmβðd; t;VÞ
� �

;

þð1� YdðtÞÞ logð1�mβðd; t;VÞÞg;

where hðd; t; vÞ is a user-specified weight function. We discuss choice of hðd; t; vÞ further below.
Such a ΨF

0 ¼ β0 solves the equation

0 ¼ E0

X
t2τ
X

d2D hðd; t;VÞ
d
dβ0

mβ0ðd; t;VÞ
mβ0ð1�mβ0Þ

ðE0ðYdðtÞ j VÞ �mβ0ðd; t;VÞÞ:

This equation can be replaced by

0 ¼ E0
X

t2τ
X

d2D hðd; t;VÞ
d
dβ0

mβ0ðd; t;VÞ
mβ0ð1�mβ0Þ

E0 YdðtÞjLð0Þð Þ �mβ0ðd; t;VÞ
� �

;

which corresponds with

ΨFðPO;U;0Þ ¼ argmin
β

�E0

X
t2τ
X

t2D hðd; t;VÞ E0ðYdðtÞjLð0ÞÞ logmβðd; t;VÞ
�

þð1� E0ðYdðtÞjLð0ÞÞÞ logð1�mβðd; t;VÞÞ
�
:

In this case we have that
d

dβ0
mβ0 ðd;t;VÞ

mβ0 ð1�mβ0 Þ
¼ ðfjðd; t;VÞ : j ¼ 1; . . . ; JÞ.

To be completely general, we will define our causal quantity of interest as a function f of EðYdðtÞjLð0ÞÞ
across d 2 D; t 2 τ and the distribution QLð0Þ of Lð0Þ. Thus we define

ΨFðPO;U;0Þ ¼ f E0 YdðtÞjLð0Þð Þ : d 2 D; t 2 τð Þ;QLð0Þ;0
� �

:

In addition to including the above example, this general formulation allows us to include marginal
structural working models on continuous outcomes and on the intervention-specific hazard.

2.3.1 Choice of a weight function hðd; t;VÞ

Unless one is willing to assume that the MSM mβ is correctly specified, choice of the weight function
changes the target quantity being estimated. Choice of the weight function should thus be guided by the
motivating scientific question. For example, the simple weight function hðd; t;VÞ ¼ 1 gives equal weight to
all time points and switch times. Alternatively, choice of a weight function equal to the marginal probability
of following rule d through time t within strata of V gives greater weight to those rule, time, and baseline
strata combinations with more support in the data, and zero weight to values ðd; t; vÞ without support. As
discussed further below, choice of a weight function can thus also affect both identifiability of the target
parameter and the asymptotic and finite sample properties of IPW and TML estimators.

2.3.2 Running example

Continuing our HIV example, recall that static regimes are a special case of dynamic regimes and define the
set of treatment rules of interest D as the set of possible switch times (switch at time 0, switch at time 1, . . . ,
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never switch). We might focus on the marginal counterfactual survival curves under a range of switch times
(with V defined as the empty set). Alternatively, we might investigate how survival under a specific switch
time differs among subjects that have a CD4þ T cell count < 50 versus � 50 cells/μl at time of failure
(V ¼ IðCD4ð0Þ< 50Þ where CD4ð0Þ � Lð0Þ). For simplicity, for the remainder of the paper we use a running
example in which we avoid conditioning on baseline covariates (i.e. V ¼ fg).

The true time-dependent causal dose–response curve ðE0ðYdðtÞÞ : d 2 D; t 2 1; . . . ;K þ 1Þ corresponds
to the set of counterfactual survival curves (through time K þ 1) that would have been observed for the
population as a whole under each possible switch time. In this example, each rule d implies a single vector
�a; we use dðtÞ to refer to the value aðtÞ implied by rule d and sd to refer to the switch time assigned by rule
d. One might then specify the following marginal structural working model to summarize how the counter-
factual probability of death by time t varies as a function of t and assigned switch time:

Logit mβðd; tÞ ¼ β0 þ β1t þ β2 dðt � 1Þðt � sdÞð Þ;
where dðt � 1Þðt � sdÞ is time since switch for subjects who have switched by time t � 1, and otherwise 0.
For simplicity, we choose hðd; tÞ ¼ 1 and define the target causal quantity of interest as the projection of
ðE0ðYdðtÞÞ : d 2 D; t 2 1; . . . ;K þ 1Þ onto mβðd; tÞ according to

ΨFðPO;U;0Þ ¼ argmin
β

�E0

X
t2τ
X

d2D YdðtÞ logmβðd; tÞ
�

þð1� YdðtÞÞ logð1�mβðd; tÞÞ
�
:

ð1Þ

2.4 Identifiability and definition of statistical target parameter

We assume the sequential randomization assumption [11]

AðkÞ
a

LdjPaðAðkÞÞ; k ¼ 0; . . . ;K ð2Þ

(noting that weaker identifiability assumptions are also possible; see, for example, Robins and Hernan [9]).
In our HIV example, the plausibility of this assumption would be strengthened by measuring all determinants
of the decision to switch to second line therapy that also affect mortality via pathways other than switch time.

We further assume positivity, informally an assumption of support for each rule of interest across
covariate histories compatible with that rule of interest. Specifically, for each d; t;V for which hðd; t;VÞ�0,
we assume

P0ðAðkÞ ¼ dkð�LðkÞÞj�LðkÞ; �Aðk � 1Þ ¼ �dð�Lðk � 1ÞÞ>0 ; k ¼ 0; . . . ;K � almost everywhere: ð3Þ

In our HIV example, in which hðd; tÞ¼ 1, a subject who has not already switched should have some positive
probability of both switching and not switching regardless of his covariate history. Under these assump-
tions, the counterfactual probability distribution of Ld is identified from the true observed data distribution
P0 and given by the G-computation formula Pd

0 [11]:

Pd
0ðlÞ ¼

YKþ1

k¼0

Qd
LðkÞ;0ð�lðkÞÞ; ð4Þ

where Qd
LðkÞ;0ð�lðkÞÞ ¼ QLðkÞ;0ðlðkÞj�lðk � 1Þ; �Aðk � 1Þ ¼ �dð�Lðk � 1ÞÞ. Thus this G-computation formula Pd

0 is
defined by the product over all LðkÞ-nodes of the conditional distribution of the LðkÞ-node, given its
parents, and given �Aðk � 1Þ ¼ �dð�Lðk � 1ÞÞ. If identifiability assumptions (2) and (3) hold for each rule
d 2 D, then the time-dependent causal dose–response curve ðE0ðYdðtÞjVÞ : d 2 D; t 2 τÞ is also identified
from P0 through the collection of G-computation formulas ðPd

0 : d 2 DÞ. For the remainder of the paper, we
choose τ ¼ 1; . . . ;K þ 1 and at times suppress the index set τ.
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Let Ld ¼ ðLð0Þ; Ldð1Þ; . . . ; LdðK þ 1ÞÞ denote a random variable with probability distribution Pd
0, which

includes as a component the process Yd ¼ ðYdð0Þ;Ydð1Þ; . . . ;YdðK þ 1ÞÞ. The above-defined causal quan-
tities can now be defined as a parameter of P0. For example, if YðtÞ 2 ½0; 1� and the causal parameter of
interest is a vector of coefficients in a logistic MSM, then we have

ΨFðPO;U;0Þ ¼ argmin
β

�E0

X
t

X
d2D hðd; t;VÞ E0ðYdðtÞjLð0ÞÞ logmβðd; t;VÞ

�

þð1� E0ðYdðtÞjLð0ÞÞÞ logð1�mβðd; t;VÞÞ
�

;ΨðP0Þ:

The estimand ψ0 ¼ β0 solves the equation

0 ¼ E0
X

t

X
d2D hðd; t;VÞ

d
dβ0

mβ0ðd; t;VÞ
mβ0ð1�mβ0Þ

ðE0ðYdðtÞjLð0ÞÞ �mβ0ðd; t;VÞÞ:

The causal identifiability assumptions put no restrictions on the probability distribution P0 so that our
statistical model is unchanged, with the exception that we now also assume positivity (3). The statistical
target parameter is now defined as a mapping Ψ : M ! IR J that maps a probability distribution P 2 M of O
into a vector of parameter values ΨðPÞ.

The statistical estimation problem is now defined: We observe n i.i.d. copies O1; . . . ;On of O,P0 2 M
and we want to estimate ΨðP0Þ for a defined target parameter mapping Ψ : M ! IR J . For this estimation
problem, the causal model plays no further role – even when one does not believe any of the causal
assumptions, one might still argue that the statistical parameter ΨðP0Þ ¼ ψ0 represents an effect measure of
interest controlling for all the measured confounders.

3 Pooled TMLE of working MSM for dynamic treatments and
time-dependent outcome process

The TMLE algorithm starts out with defining the target parameter as a Ψð�Q;QLð0ÞÞ for a particular choice �Q

that is easier to estimate than the whole likelihood Q. It requires the derivation of the efficient influence

curve D�ðPÞ which can also be represented as D�ð�Q;QLð0Þ; gÞ. Subsequently, it defines a loss function

Lð�Q;QLð0ÞÞ for ð�Q0;QLð0Þ;0Þ and a submodel ðð�Qð�; gÞ;QLð0Þð�0Þ : �; �0Þ through ð�Q;QLð0ÞÞ at ð�; �0Þ ¼ 0,

indexed by the intervention mechanism g, chosen so that d
dð�;�0Þ Lð�Qð�; gÞ;QLð0Þð�0ÞÞ

���
�¼0

spans the efficient

influence curve D�ð�Q;QLð0Þ; gÞ. Given these choices, it remains to define the updating algorithm which

simply uses the submodel through the initial estimator to determine the update by fitting ð�; �0Þ with
minimum loss based estimation (MLE), and this updating step is iterated till convergence at which point the
MLE of ð�; �0Þ equals 0. By the fact that an MLE solves its score equation, it then follows that the final

update �Q�
n;Q

�
Lð0Þ;n also solves the efficient influence curve equation

P
i D

�ð�Qn;Q�
Lð0Þ;n; gnÞðOiÞ ¼ 0, which

provides the foundation for its asymptotic linearity and efficiency. The remainder of this section presents
each of these steps in detail.

An estimator of ψ0 is efficient among the class of regular estimators if and only if it is asymptotically
linear with influence curve D�ðQ0; g0Þ[37]. The efficient influence curve can thus be used as an ingredient
for the construction of an efficient estimator. One approach is to represent the efficient influence curve as
an estimating function D�ðQ; g;ψÞ and define an estimator ψn as the solution of PnD�ðQn; gn;ψÞ ¼ 0, given
initial estimators Qn; gn. This is referred to as the estimating equation methodology for construction of
locally efficient estimators [38]. Here, we instead use the efficient influence curve to define a targeted
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maximum likelihood (substitution) estimator ΨðQ�
nÞ that, as a by-product of the procedure, satisfies

PnD�ðQ�
n; gnÞ ¼ 0 and thus also solves the efficient influence curve estimating equation. Under

regularity conditions, one can now establish that, if D�ðQ�
n; gnÞ consistently estimates D�ðQ0; g0Þ, then

ΨðQ�
nÞ is asymptotically linear with influence curve equal to the efficent influence curve, so that ΨðQ�

nÞ is
asymptotically efficient. In addition, robustness properties of the efficient influence curve are naturally
inherited by the TMLE.

Robins [13, 29] and Bang and Robins [22] reformulate the statistical target parameter and corresponding
efficient influence curve for longitudinal MSMs on the intervention-specific mean as a series of iterated
conditional expectations. For completeness, and to generalize to dynamic marginal structural working
models possibly conditional on baseline covariates, as well as to general functions of the intervention-
specific mean across a user-supplied class of interventions, we present this reformulation of the statistical
target parameter below. The corresponding efficient influence curve is given in Appendix B. We will use the
common notation Ph ¼ ÐhðOÞdPðOÞ for the expectation of a function hðOÞ with respect to P.

3.1 Reformulation of the statistical target parameter in terms of iteratively
defined conditional means

For the case YdðtÞ 2 ½0; 1� in Section 2.4 we defined ΨðPÞ as

ΨðQÞ ¼ argmin
β

�E
X

t

X
d2D hðd; t;VÞ �Qd;t

Lð1Þ logmβðd; t;VÞ þ ð1� �Qd;t
Lð1ÞÞ logð1�mβðd; t;VÞÞ

n o
; ð5Þ

where �Qd;t
Lð1Þ ¼ EPðYdðtÞjLð0ÞÞ. Thus, ΨðPÞ only depends on P through �QLð1Þ ¼ ð�Qd;t

Lð1Þ : d 2 D; tÞ and QLð0Þ.

Therefore, we will also refer to the statistical target parameter ΨðPÞ as ΨðQÞ where we redefine

Q; ð�QLð1Þ;QLð0ÞÞ. For each given t, we can use the following recursive definition of EPðYdðtÞjLð0ÞÞ: for

k ¼ t; t � 1; . . . ; 1 we have

�Qd;t
LðkÞ ¼ E YdðtÞj�Ldðk � 1Þ

� �

¼ ELðkÞ �Qd;t
Lðkþ1Þj�Lðk � 1Þ; �Aðk � 1Þ ¼ �dk�1

�Lðk � 1Þ� �� �
;

where we define �Qd;t
Lðtþ1Þ ¼ YðtÞ. This defines �Qd;t

Lð1Þ as an iteratively defined conditional mean [22].

To obtain ΨðQÞ we simply put �QLð1Þ ¼ ð�Qd;t
Lð1Þ : d 2 D; tÞ, combined with the marginal distribution of Lð0Þ

into the above representation ΨðQÞ ¼ Ψð�QLð1Þ;QLð0ÞÞ. As mentioned in the previous section, we have that

ΨðQÞ solves the score equations given by

0 ¼ E
X

t

X
d2D hðd; t;VÞ

d
dβmβðd; t;VÞ
mβð1�mβÞ E YdðtÞjLð0Þ� ��mβðd; t;VÞ

� �

;E
X

t

X
d2D h1ðd; t;VÞ E YdðtÞjLð0Þ� ��mβðd; t;VÞ

� �
;

where we defined

h1ðd; t;VÞ; hðd; t;VÞ
d
dβmβðd; t;VÞ
mβð1�mβÞ :

The TMLE for the linear working model using the squared error loss function is obtained by simply
redefining h1ðd; t;VÞ; hðd; t;VÞ d

dβmβðd; t;VÞ.
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In general, the above shows that we can represent ΨðPÞ ¼ f ððEðYdðtÞjLð0ÞÞ : t; dÞ;QLð0ÞÞ as a function
f ðQÞ, where Q ¼ ð�QLð1Þ ¼ ðEðYdðtÞjLð0Þ : d; tÞ;QLð0ÞÞ and we have an explicit representation of the derivative
equation corresponding with f.

3.2 Estimation of intervention mechanism g0

The log-likelihood loss function for g0 is � log g. Specifically, we can factorize the likelihood g0 as

g0¼
QK
k¼0

g1;kðA1ðkÞjPaðA1ðkÞÞÞg2;kðA2ðkÞjPaðA2ðkÞÞÞ;

where ðg1;k : kÞ represents the treatment mechanism and ðg2;k : kÞ represents the censoring mechanism. Both
mechanisms can be estimated separately with a log-likelihood based logistic regression estimator, either
according to parametric models, or preferably using the state of the art in machine learning. In particular,
we can use the log-likelihood based super learner based on a library of candidate machine learning
algorithms, which uses cross-validation to determine the best performing weighted combination of the
candidate machine learning algorithms [39]. Use of such aggressive data-adaptive algorithms is recom-
mended in order to ensure consistency of gn.

If there are certain variables in the PaðAðkÞÞ that are known to be instrumental variables (variables that
affect future Y nodes only via their effects on AðkÞ), then these variables should be excluded from our
estimates of g0 in the TMLE procedure. In that case our estimate of the conditional distribution of AðkÞ is in
fact not estimating the conditional distribution of AðkÞ given its parents; however, for simplicity we do not
make this explicit in our notation.

3.3 Loss functions and initial estimator of Q0

We will alternate notation �Qd;t
k and �Qd;t

LðkÞ. Recall that ΨðQÞ depends on Q through QLð0Þ, and

�Q; ð�Qd;t
k : d 2 D; t 2 τ; k ¼ 1; . . . ; tÞ. Note �Qd;t

k is a function of �lðk � 1Þ, t ¼ 1; . . . ;K þ 1, k ¼ 1; . . . ; t, d 2 D.

We will use the following loss function for �Qd;t
k :

�Ld;t;k;�Qd;t
kþ1
ð�Qd;t

k Þ ¼

I �Aðk � 1Þ ¼ �dk�1ð�Lðk � 1ÞÞ� �
�Qd;t
kþ1 log

�Qd;t
k þ 1� �Qd;t

kþ1

� �
log 1� �Qd;t

k

� �n o
:

This is an application of the log-likelihood loss function for the conditional mean of �Qd;t
kþ1 given

past covariates and given that past treatment has been assigned according to rule d. For example, fitting
a parametric logistic regression model of �Qd;t

kþ1 on past covariates among subjects with
�Aðk � 1Þ ¼ �dk�1ð�Lðk � 1ÞÞ would minimize the empirical mean of this loss function over the unknown
parameters of the logistic regression model. Alternatively, one could use loss-based machine learning
algorithms, such as loss-based super learning, with this loss function.

In this loss function, the outcome �Qd;t
kþ1 is treated as known. In implementation of our estimator, it

will be replaced by an estimate; we thus refer to �Qd;t
kþ1 as a nuisance parameter in this loss function.

The collection of loss functions from k ¼ 1; . . . ; t implies a sequential regression procedure where one starts

at k ¼ t and sequentially fits �Qd;t
k for k ¼ t; . . . ; 1. We describe this procedure in greater detail in

the next subsection, for a sum-loss function that sums the above loss function over a collection of rules
d 2 D.

By summing over d 2 D, the time points t, and k ¼ 1; . . . ; t, we obtain the loss function
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L�Qð�QÞ;
X

t

Xt

k¼1

X
d2D Ld;t;k;�Qd;t

kþ1
ð�Qd;t

k Þ

for the whole �Q ¼ ð�Qd;t
k : d 2 D; k ¼ 1; . . . ; t; t ¼ 1; . . . ;K þ 1Þ.

We will use the log-likelihood loss LðQLð0ÞÞ ¼ � logQLð0Þ as loss function for the distribution Q0;Lð0Þ of
Lð0Þ, but this loss will play no role since we will estimate Q0;Lð0Þ with the empirical distribution function
QLð0Þ;n. To conclude, we have presented a loss function for all components of ð�Q;QLð0ÞÞ our target parameter
depends on, and the sum-loss function LQð�Q;QLð0ÞÞ;L�Qð�QÞ � logQLð0Þ is a valid loss function for ð�Q;QLð0ÞÞ
as a whole.

3.4 Non-targeted substitution estimator

These loss functions imply a sequential regression methodology for fitting each of the required components

of ð�Q;QLð0ÞÞ. These initial fits can then be used to construct a non-targeted plug-in estimator of the target

parameter ψ0. As noted, we estimate the marginal distribution of Lð0Þ with the empirical distribution. We

now describe how to obtain an estimator �Qd;t
k;n, d 2 D, k ¼ 1; . . . ; t, for any given t ¼ 1; . . . ;K þ 1. We define

�Qd;t
tþ1 ¼ YðtÞ for all d, and recall that �Qd;t

t;n is the regression of YðtÞ on �Aðt � 1Þ ¼ �dt�1ð�Lðt � 1ÞÞ and �Lðt � 1Þ.
This latter regression can be carried out conditional on �A1ðt � 1Þ; �Lðt � 1Þ, stratifying only on not being

censored through time t � 1 (i.e. �A2ðt � 1Þ ¼ 0Þ). The resulting fit for all �A1ðt � 1Þ values can then be

evaluated at �Aðt � 1Þ ¼ �dt�1ð�Lðt � 1ÞÞ. In this manner, if certain rules have little support, one can still

obtain an initial estimator that smoothes across all observations.

Given the regression fit �Qd;t
t;n, for a d 2 D, we regress �Qd;t

t;n onto �Aðt � 2Þ; �Lðt � 2Þ and evaluate it at
�Aðt � 2Þ ¼ �dt�2ð�Lðt � 2ÞÞ, giving us �Qd;t

t�1;n. This is carried out for each d 2 D, giving us �Qd;t
t�1;n for each d 2 D.

Again, given this regression �Qd;t
t�1;n, we regress this on �Aðt � 3Þ; �Lðt � 3Þ, and evaluate it at

�Aðt � 3Þ ¼ �dt�3ð�Lðt � 3ÞÞ, giving us �Qd;t
t�2;n. We carry this out for each d 2 D, giving us �Qd;t

t�2;n, for each

d 2 D. This process is iterated until we obtain an estimator of �Qd;t
1;nðLð0ÞÞ for each d 2 D. Since this process is

carried out for each t ¼ 1; . . . ;K þ 1, this results in an estimator �Qd;t
1;n for each d 2 D and t ¼ 1; . . . ;K þ 1. We

denote this estimator of �Q1;0 ¼ ð�Qd;t
1;0 : d; tÞ with �Q1;n ¼ ð�Qd;t

1;n : d; tÞ. Note that a plug-in estimator

Ψð�Q1;n;QLð0Þ;nÞ of ψ0 ¼ Ψð�Q1;0;QLð0ÞÞ is now obtained by regressing �Qd;t
1;n onto d; t;V according to the working

marginal structural model using weighted logistic regression based on the pooled sample

ð�Qd;t
1;nðLið0ÞÞ;Vi; d; tÞ, d 2 D; i ¼ 1; . . . ; n, t ¼ 1; . . . ;K þ 1, with weight hðd; t;ViÞ.
The pooled TMLE presented below utilizes this same sequential regression algorithm and makes use of

these initial fits of Q0. In order to provide a consistent initial estimator of Q0 and thereby improve the
efficiency of the TMLE, use of an aggressive data-adaptive algorithm such as super learning [39] when
generating the initial regression fits is recommended. These initial fits are then updated to remove bias in a
series of targeting steps that rely on the fit gn of g0. The updating steps involve submodels whose score
spans the efficient influence curve.

3.5 Loss function and least favorable submodel that span the efficient
influence curve

Recall that we use the notation g0:k ¼
Qk

j¼0 gAðjÞ for the cumulative product of conditional intervention

distributions. Consider the submodel �Qt
kð�; gÞ¼ð�Qd;t

k ð�; gÞ : d 2 DÞ with parameter � defined by
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Logit �Qd;t
LðkÞð�; gÞ ¼ Logit �Qd;t

LðkÞ þ �
h1ðd; t;VÞ
g0:k�1

; k ¼ t; . . . ; 1:

This parameter � is of same dimension as β and h1. This defines a submodel �Qtð�; gÞ with parameter � through
�Qt ¼ ð�Qd;t

k : d 2 D; k ¼ 1; . . . ; tÞ. Note that

d
d�

Ld;t;k;�Qd;t
kþ1
ð�Qd;t

k ð�; gÞÞ
����
�¼0

¼ h1ðd; t;VÞ Ið
�Aðk � 1Þ ¼ �dk�1ð�Lðk � 1ÞÞÞ

g0:k�1
ð�Qd;t

kþ1 � �Qd;t
k Þ:

This shows that

d
d�

XKþ1

t¼1

X
d2D

Xt

k¼1
Ld;t;k;�Qd;t

kþ1
ð�Qd;t

k ð�; gÞÞj
�¼0

¼
XKþ1

t¼1

X
d2D

Xt

k¼1
h1ðd; t;VÞ Ið

�Aðk � 1Þ ¼ �dk�1ð�Lðk � 1ÞÞÞ
g0:k�1

ð�Qd;t
kþ1 � �Qd;t

k Þ

¼ cðQÞ½D�ðPÞ � D�
Lð0ÞðQÞ�

where D�ðPÞ is the efficient influence curve as presented in Corollary (1), Appendix (B), and we define

cðQÞ;EQLð0Þ

X
t;d

h1ðd; t;VÞ d
dβ

mβðd; t;VÞ;

giving

D�
Lð0ÞðQÞ ¼ cðQÞ�1

X
t;d

h1ðd; t;VÞ �Qd;t
Lð1Þ �mβðd; t;VÞ

� �
:

In other words, the sum-loss function

L�Qð�QÞ ¼
XKþ1

t¼1

X
d2D

Xt

k¼1
Ld;t;k;�Qd;t

kþ1
ð�Qd;t

k Þ

and submodel �Qð�; gÞ ¼ ð�Qd;t
k ð�; gÞ : k; d; tÞ through �Q ¼ ð�Qd;t

k : k; d; tÞ generates the component
D�ðPÞ � D�

Lð0ÞðQÞ of the efficient influence curve D�ðPÞ.
Consider also a submodel QLð0Þð�0Þ of QLð0Þ with score D�

Lð0ÞðQÞ, but this submodel and loss will play no
role in the TMLE algorithm since we will estimate QLð0Þ with its NPMLE, the empirical distribution of Lið0Þ,
i ¼ 1; . . . ; n, so that the MLE of �0 will be equal to zero. This defines our submodel ðQLð0Þð�0Þ; �Qð�; gÞ : �0; �Þ.
The sum-loss function L�QðQLð0Þ; �QÞ ¼ Lð�QÞ � logQLð0Þ and this submodel satisfy the condition that the
generalized score spans the efficient influence curve:

D�ðQ; gÞ 2 d
dð�; �0Þ L�Q QLð0Þð�0Þ; �Qð�; gÞ

� �����
ð�;�0Þ¼0

* +
: ð6Þ

3.6 Pooled TMLE

We now describe the TMLE algorithm based on the above choices of (1) the representation of ΨðPÞ as
Ψð�Q;QLð0ÞÞ, (2) the loss function for ð�Q;QLð0ÞÞ, and (3) the least favorable submodels
ðð�Qð�; gÞ : �Þ; ðQLð0Þð�0Þ : �0ÞÞ through ð�Q;QLð0ÞÞ at ð�; �0Þ ¼ 0 for fluctuating these parameters ð�Q;QLð0ÞÞ.
We utilize the same sequential regression approach described in Section 3.4, but now incorporate sequen-
tial targeted updating of the initial regression fits. We assume an estimator gn of g0. We first specify where
in the algorithm updating occurs and then describe the updating process.
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Recall that we define �Qd;t
tþ1 ¼ YðtÞ for all d and that �Qd;t

t;n is the regression of YðtÞ on
�Aðt � 1Þ ¼ �dt�1ð�Lðt � 1ÞÞ; �Lðt � 1Þ. For any given t ¼ 1; . . . ;K þ 1, the initial estimator �Qd;t

t;n is first updated

to �Qd;t;�
t;n using a logistic regression fit of our least favorable submodels, as described below. For a d 2 D, we

then regress the updated regression fit �Qd;t;�
t;n onto �Aðt � 2Þ; �Lðt � 2Þ, and evaluate it at

�Aðt � 2Þ ¼ �dt�2ð�Lðt � 2ÞÞ, giving us �Qd;t
t�1;n. This is carried out for each d 2 D, giving us �Qd;t

t�1;n for each

d 2 D. The regressions �Qd;t
t�1;n are then updated for each d 2 D, as described below, giving us �Qd;t;�

t�1;n for each

d 2 D. For a d 2 D, we then regress the updated regression fit �Qd;t;�
t�1;n on �Aðt � 3Þ; �Lðt � 3Þ and evaluate it at

�Aðt � 3Þ ¼ �dt�3ð�Lðt � 3Þ, giving us �Qd;t
t�2;n. We again carry this out for each d 2 D, giving us �Qd;t

t�2;n for each

d 2 D and again update the resulting regressions, giving us �Qd;t;�
t�2;n, for each d 2 D. This process is iterated

until we obtain an updated estimator �Qd;t;�
1;n ðLð0ÞÞ for each d 2 D. Since this process is carried out for each

t ¼ 1; . . . ;K þ 1, this results in an estimator �Qd;t;�
1;n for each d 2 D and t ¼ 1; . . . ;K þ 1. We denote this

estimator of �Q1;0 ¼ ð�Qd;t
1;0 : d; tÞ with �Q�

1;n ¼ ð�Qd;t;�
1;n : d; tÞ.

The updating steps are implemented as follows: for each t 2 f1; . . . ;K þ 1g, and for k ¼ t to k ¼ 1, we
compute

�k;n ; argmin
�k

Pn

X
d2D Ld;t;k;�Qd;t;�

kþ1;n

�Qd;t
k;nð�k; gnÞ

� �
;

and compute the corresponding update �Qd;t;�
k;n ¼ �Qd;t

k;nð�k;n; gnÞ, for all d 2 D. Note that

�k;n ¼ argmin
�

X
d2D Ld;t;k;�Qd;t;�

kþ1;n
ð�Qd;t

k;nð�; gnÞÞ

¼ argmin
�

X
d2D

Xn

i¼1
Ið�Aiðk � 1Þ ¼ �dk�1ð�Liðk � 1ÞÞÞ

�Qd;t;�
kþ1;nð�LiðkÞÞ log �Qd;t

k;nð�; gnÞð�Liðk � 1ÞÞ
n

þð1� �Qd;t;�
kþ1;nð�LiðkÞÞÞ logð1� �Qd;t

k;nð�; gnÞð�Liðk � 1ÞÞÞ
o

k ¼ 1; . . . ;K þ 1 :

Thus �k;n can be obtained by fitting a logistic regression of the outcome �Qd;t;�
kþ1;nð�LiðkÞÞ with offset Logit �Qd;t

k;n

on multivariate covariate

h1ðd; t;ViÞIð�Aiðk � 1Þ ¼ �dk�1ð�Liðk � 1ÞÞÞ=g0:k�1ðOiÞ;

using a data set pooled across i ¼ 1; . . . ; n; d 2 D (consisting of n� jDj observations).
This defines the TMLE �Q�

n ¼ ð�Qd;t;�
k;n : d 2 D; t; k ¼ 1; . . . ; tÞ. In particular, �Q�

1;n ¼ ð�Qd;t;�
1;n : d 2 D; tÞ is the

TMLE of �Q1;0 ¼ ðE0ðYdðtÞjLð0ÞÞ : d 2 D; tÞ. This defines now the TMLE ðQLð0Þ;n; �Q�
nÞ of ðQLð0Þ;0; �Q0Þ, where

QLð0Þ;n is the empirical distribution of Lð0Þ.
The TMLE of ψ0 is the plug-in estimator corresponding with �Q�

1;n and QLð0Þ;n:

ψ�
n ¼ Ψð�Q�

1;n;QLð0Þ;nÞ:

This plug-in estimator Ψð�Q�
1;n;QLð0Þ;nÞ of ψ0 ¼ Ψð�Q1;0;QLð0Þ;0Þ is obtained by regressing �Qd;t;�

1;n onto d; t;V
according to the marginal structural working model in the pooled sample ð�Qd;t;�

1;n ðLið0ÞÞ;Vi; d; tÞ,
d 2 D; i ¼ 1; . . . ; n, t ¼ 1; . . . ;K þ 1, using weights hðd; t;ViÞ.

An alternative pooled TMLE that only fits a single � to compute the update is described in
Appendix C.
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3.7 Statistical inference for pooled TMLE

By construction, the TMLE solves the efficient influence curve equation 0 ¼ PnD�ð�Q�
n; gn;Ψð�Q�

n;QLð0Þ;nÞÞ,
thereby making it a double robust locally efficient substitution estimator under regularity conditions, and
positivity (3) (van der Laan [20], theorem 8.5, appendix A.18). Here, we provide standard error estimates and
thereby confidence intervals for the case that gn is a maximum likelihood estimator for g0 using a correctly
specified semiparametric model for g0.

Specifically, if gn is a maximum likelihood estimator of g0 according to a correctly specified semipara-

metric model for g0, and �Q�
n converges to some possibly misspecified �Q, then under regularity conditions the

TMLE ψ�
n is asymptotically linear with an influence curve given by D�ð�Q; g0;ψ0Þ minus its projection onto

the tangent space of this semiparametric model for g0. As a consequence, the asymptotic variance offfiffiffi
n

p ðψ�
n � ψ0Þ is more spread-out or equal to the covariance matrix �0 ¼ P0D�ð�Q; g0;ψ0Þ2. A consistent

estimator of this asymptotic variance is given by

�n ¼ Pn D�ð�Q�
n; gn;ψ

�
nÞ

� �2
:

As a consequence, ψ�
nðjÞ 	 1:96

ffiffiffiffiffiffiffiffiffiffi
�nðj;jÞ

p ffiffi
n

p is an asymptotically conservative 95% confidence interval for ψ0ðjÞ,
and we can also use this multivariate normal limit result, ψ�

n ,Nðψ0;�0=nÞ, to construct a simultaneous
confidence interval for ψ0 and to test null hypotheses about ψ0. This variance estimator treats weight
function h as known. If h is estimated, then this variance estimator still provides valid statistical inference
for the statistical target parameter defined by the estimated h.

In the case that gn is a data-adaptive estimator converging to g0, we suggest (without proof), that this
variance estimator will still provide an asymptotically conservative confidence interval under regularity
conditions. However, ideally the data-adaptive estimator gn should also be targeted [40]. An approach to
valid inference in the case where gn is inconsistent but Qn is consistent is also discussed in van der Laan
[40]; however, it remains to be generalized to the parameters in this paper.

4 Implementation of the pooled TMLE

The previous section reformulated the statistical parameter in terms of iteratively defined conditional means
and described a pooled TMLE for this representation. In this section, we illustrate notation and implemen-
tation of this TMLE to estimate the parameters of a marginal structural working model on counterfactual
survival over time.

4.1 The statistical estimation problem

We continue our motivating example, in which the goal is to learn the effect of switch time on survival. For
illustration, focus on the two time point case where K ¼ 1. Let the observed data consist of n i.i.d. copies
O1; . . . ;On of Oi ¼ ðLið0Þ;Aið0Þ; Lið1Þ;Aið1Þ;Yið2ÞÞ,P0. Let LðtÞ ¼ ðYðtÞ;CD4ðtÞÞ, where YðtÞ is an indicator
of death by time t, and CD4ðtÞ is CD4 count at time t. Assume all subjects are alive at baseline (Yð0Þ ¼ 0).
As above, AðtÞ is an indicator of switch to second line by time t. We assume no right censoring so that all
subjects are followed until death or the end of the study (for convenience define variable values after death
as equal to their last observed value). We specify a NPSEM such that each variable may be a function of all
variables that precede it and an independent error, and assume the corresponding non-parametric statis-
tical model for P0.

Define the set of treatment rules of interest D as the set of all possible switch times f0; 1; 2g (where 2
corresponds to no switch). Each rule d implies a single vector �a ¼ ðað0Þ; að1ÞÞ; we use dðtÞ to refer to the
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value aðtÞ implied by rule d, and sd to refer to the switching time implied by rule d. We specify the following
marginal structural working model for counterfactual probability of death by time t under rule d:

Logitmβðd; tÞ ¼ β0 þ β1t þ β2ðdðt � 1Þðt � sdÞÞ: ð7Þ
The target causal parameter is defined as the projection of ðE0ðYdðtÞÞ : d 2 D; t 2 f1; 2gÞ onto mβðd; tÞ
according to eq. (1).

Under the sequential randomization (2) and positivity (3) assumptions, EðYdðtÞjLð0ÞÞ ¼ EðYdðtÞjLð0ÞÞ.
The target statistical parameter is defined as the projection of ðEðYdðtÞjLð0ÞÞ : d 2 D; t 2 f1; 2gÞ, onto the
marginal structural working model mβ, according to eq. (5) with hðd; tÞ ¼ 1.

4.1.1 Reformulation of the statistical target parameter

Note that EðYdðt ¼ 2ÞjLð0ÞÞ for rule d (denoted �Qd;2
1 ) can be expressed in terms of iteratively defined

conditional means:

ELð1Þ EYð2Þ Yð2ÞjLð1Þ; Lð0Þ;Að1Þ ¼ dð1Þ;Að0Þ ¼ dð0Þð ÞjLð0Þ;Að0Þ ¼ dð0Þ� �
;

while EðYdðt ¼ 1ÞjLð0ÞÞ (denoted �Qd;1
1 ) equals EðYð1ÞjLð0Þ;Að0Þ ¼ dð0ÞÞ. The statistical target parameter

ΨðQÞ is defined by plugging ð�Qd;1
1 ; �Qd;2

1 Þ : d 2 D, and the marginal distribution of Lð0Þ into eq. (5).

4.2 Estimator implementation

We begin by describing implementation of a simple plug-in estimator of ΨðQÞ.

4.2.1 Non-targeted substitution estimator

1. For each rule of interest d 2 D, corresponding to each possible switch time, generate a vector �Qd;2
1;n of

length n for t ¼ 2:
(a) Fit a logistic regression of Yð2Þ on Lð1Þ; Lð0Þ;Að1Þ;Að0Þ and generate a predicted value for each

subject by evaluating this regression fit at Að1Þ ¼ dð1Þ;Að0Þ ¼ dð0Þ. Note E0ðYð2ÞjYð1Þ ¼ 1Þ ¼ 1, so
the regression need only be fit and evaluated among subjects who remain alive at time 1. This gives

a vector �Qd;2
2;n of length n.

(b) Fit a logistic regression of the predicted values generated in the previous step on Lð0Þ;Að0Þ.
Generate a new predicted value for each subject by evaluating this regression fit at Að0Þ ¼ dð0Þ.
This gives a vector �Qd;2

1;n of length n.
2. For each rule of interest d 2 D generate a vector �Qd;1

1;n of length n for t ¼ 1: Fit a logistic regression of
Yð1Þ on Lð0Þ;Að0Þ and generate a predicted value for each subject by evaluating this regression fit at
Að0Þ ¼ dð0Þ.

3. The previous steps generated �Q1;n ¼ ð�Qd;t
1;n; : d 2 D; t 2 f1; 2gÞ. Stack these vectors to give a single vector

with length equal to the number of subjects n times the number of rules Dj j times the number of time

points ðn� 3� 2Þ. Fit a pooled logistic regression of �Q1;n on ðd; tÞ according to model mβ (eq. 7), with
weights given by hðd; tÞ (here equal to 1). This gives an estimator of the target parameter ΨðQÞ.

We now describe how the pooled TMLE modifies this algorithm to update the initial estimator �Q1;n. In the
following section, we compare the pooled TMLE to this non-targeted substitution estimator and with other
available estimators.
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4.2.2 Pooled TMLE

1. Estimate P0ðAð1ÞjAð0Þ; Lð1Þ; Lð0ÞÞ and P0ðAð0ÞjLð0ÞÞ. Denote these estimators g1;n and g0;n, respectively,
and let g0:1;n ¼ g0;ng1;n denote their product. In our example, this step involves estimating the condi-
tional probability of switching at time 0 given baseline CD4 count, and estimating the conditional
probability of switching at time 1, given a subject did not switch at time 1, did not die at time 1, and CD4
count at times 0 and 1.

2. Generate a vector �Qd;2;�
2;n of length n� Dj j for t ¼ 2, k ¼ 2:

(a) Fit a logistic regression of Yð2Þ on Lð1Þ; Lð0Þ;Að1Þ;Að0Þ. Generate a predicted value for each subject
and each d 2 D by evaluating this regression fit at Að1Þ ¼ dð1Þ;Að0Þ ¼ dð0Þ. Note that
E0ðYð2ÞjYð1Þ ¼ 1Þ ¼ 1, so the regression need only be fit and evaluated among subjects who remain
alive at time 1. This gives a vector of initial values �Qd;2

2;n of length n� Dj j.
(b) For each subject, i ¼ 1; . . . ; n, create a vector consisting of one copy of Yið2Þ for each d 2 D. Stack

these copies to create a single vector of length n� Dj j, denoted �Qd;2;�
3;n .

(c) For each subject i ¼ 1; . . . ; n and each d 2 D, create a new multidimensional weighted covariate:

hðd; t ¼ 2Þ
d
dβmβðd; t ¼ 2Þ
mβð1�mβÞ

Ið�Ai ¼ dÞ
g0:1;nðOiÞ :

In our example, hðd; tÞ ¼ 1, and
d
dβmβðd;tÞ
mβð1�mβÞ equals 1, t, and dðt � 1Þðt � sdÞ for the derivative taken

with respect to β0; β1; and β2, respectively. The following 3� 3 matrix would thus be generated for
each subject i, with rows corresponding to switch at time 0, time 1, or do not switch:

1� IðAið0Þ ¼ 1;Aið1Þ ¼ 1Þ
g0:1;nðOiÞ

2� IðAið0Þ ¼ 1;Aið1Þ ¼ 1Þ
g0:1;nðOiÞ

2� IðAið0Þ ¼ 1;Aið1Þ ¼ 1Þ
g0:1;nðOiÞ

1� IðAið0Þ ¼ 0;Aið1Þ ¼ 1Þ
g0:1;nðOiÞ

2� IðAið0Þ ¼ 0;Aið1Þ ¼ 1Þ
g0:1;nðOiÞ

1� IðAið0Þ ¼ 0;Aið1Þ ¼ 1Þ
g0:1;nðOiÞ

1� IðAið0Þ ¼ 0;Aið1Þ ¼ 0Þ
g0:1;nðOiÞ

2� IðAið0Þ ¼ 0;Aið1Þ ¼ 0Þ
g0:1;nðOiÞ

0� IðAið0Þ ¼ 0;Aið1Þ ¼ 0Þ
g0:1;nðOiÞ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

Stack these matrices to create a matrix with n� Dj j rows and one column for each component of β
(here, 3n� 3).

(d) Among those subjects still alive at the previous time point (Yð1Þ ¼ 0), fit a pooled logistic regres-

sion of �Qd;2;�
3;n (the Yð2Þ vector) on the weighted covariates created in the previous step, suppressing

the intercept and using as offset Logit �Qd;2;
2;n , the logit of the initial predicted values for t ¼ 2 and

k ¼ 2. This gives a fit for multivariate �2. Denote this fit �2;n ¼ ð�β02;n; �β12;n; �β22;nÞ.
(e) Generate �Qd;2;�

2;n by evaluating the logistic regression fit in the previous step at each d 2 D among

those subjects for whom Yð1Þ ¼ 0. For subject i and rule d, evaluate

Expit


Logitð�Qd;2

2;nð�Li; dÞÞ þ
�
β0
2;n

g0;nðdð0ÞjLið0ÞÞg1;nðdð1ÞjLið0Þ; dð0Þ; Lið1ÞÞ

þ �
β1
2;n � 2

g0;nðdð0ÞjLið0ÞÞg1;nðdð1ÞjLið0Þ; dð0Þ; Lið1ÞÞ

þ �
β2
2;n � dð1Þð2� sdÞ

g0;nðdð0ÞjLið0ÞÞg1;nðdð1ÞjLið0Þ; dð0Þ; Lið1ÞÞ
�
:

For subjects with Yð1Þ ¼ 1, �Qd;2;�
2;n ¼ �Qd;2

2;n ¼ 1. This gives an updated vector �Qd;2;�
2;n of length n� Dj j.
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3. Generate a vector �Qd;2;�
1;n of length n� Dj j for t ¼ 2, k ¼ 1:

(a) Fit a logistic regression of �Qd;2;�
2;n (generated in the previous step) on Lð0Þ;Að0Þ. Generate a predicted

value for each subject and each d 2 D by evaluating this regression fit at Að0Þ ¼ dð0Þ. This gives a
vector of initial values �Qd;2

1;n of length n� Dj j.
(b) For each subject i ¼ 1; . . . ; n and each d 2 D, create the multidimensional weighted covariate as

above, now for k ¼ 1:

hðd; t ¼ 2Þ
d
dβmβðd; t ¼ 2Þ
mβð1�mβÞ

IðAið0Þ ¼ dð0ÞÞ
g0;nðOiÞ :

The following 3� 3 matrix would thus be generated for each subject i, with rows corresponding to
switch at time 0, time 1, or don’t switch:

1� IðAið0Þ ¼ 1Þ
g0;nðOiÞ

2� IðAið0Þ ¼ 1Þ
g0;nð;OiÞ

2� IðAið0Þ ¼ 1Þ
g0;nðOiÞ

1� IðAið0Þ ¼ 0Þ
g0;nðOiÞ

2� IðAið0Þ ¼ 0Þ
g0;nðOiÞ

1� IðAið0Þ ¼ 0Þ
g0;nðOiÞ

1� IðAið0Þ ¼ 0Þ
g0;nðOiÞ

2� IðAið0Þ ¼ 0Þ
g0;nðOiÞ

0� IðAið0Þ ¼ 0Þ
g0;nðOiÞ ;

0
BBBBBBBB@

1
CCCCCCCCA
:

Stack these matrices to create a matrix with n� Dj j rows and one column for each dimension of β.
(c) Fit a pooled logistic regression of �Qd;2;�

2;n (the updated fit generated in step 2) on these weighted

covariates, suppressing the intercept and using as offset Logit �Qd;2;
1;n , the logit of the initial predicted

values for t ¼ 2 and k ¼ 1. This gives a fit for multivariate �1. Denote this fit �1;n ¼ ð�β01;n; �β11;n; �β21;nÞ.
(d) Generate �Qd;2;�

1;n by evaluating the logistic regression fit in the previous step at each d 2 D. For
subject i and rule d, evaluate

Expit Logit �Qd;2
1;n Lið0Þ; dð0Þð Þ

� �
þ �

β0
1;n

g0;nðdð0ÞjLið0ÞÞ þ
�
β1
1;n � 2

g0;nðdð0ÞjLið0ÞÞ þ
�
β2
1;n � dð1Þð2� sdÞ
g0;nðdð0ÞjLið0ÞÞ

 !
:

This gives an updated vector �Qd;2;�
1;n of length n� Dj j.

4. Generate a vector �Qd;1;�
1;n of length n� Dj j for t ¼ 1, k ¼ 1:

(a) Fit a logistic regression of Yð1Þ on Lð0Þ;Að0Þ. Generate a predicted value for each subject and each

d 2 D by evaluating this regression fit at Að0Þ ¼ dð0Þ. This gives a vector of initial values �Qd;1
1;n of

length n� Dj j.
(b) For each subject, i ¼ 1; . . . ; n, create a vector consisting of one copy of Yið1Þ for each d 2 D. Stack

these copies to create a single vector of length n� Dj j, denoted �Qd;1;�
2;n .

(c) For each subject i ¼ 1; . . . ; n and each d 2 D, create a new multidimensional weighted covariate,
for t ¼ 1; k ¼ 1:

hðd; t ¼ 1Þ
d
dβmβðd; t ¼ 1Þ
mβð1�mβÞ

IðAið0Þ ¼ dð0ÞÞ
g0;nðOiÞ :

The following 3� 3 matrix would thus be generated for each subject i, with rows corresponding to
switch at time 0, time 1, or don’t switch:

1� IðAið0Þ ¼ 1Þ
g0;nðOiÞ

1� IðAið0Þ ¼ 1Þ
g0;nð;OiÞ

1� IðAið0Þ ¼ 1Þ
g0;nðOiÞ

1� IðAið0Þ ¼ 0Þ
g0;nðOiÞ

1� IðAið0Þ ¼ 0Þ
g0;nðOiÞ

0� IðAið0Þ ¼ 0Þ
g0;nðOiÞ

1� IðAið0Þ ¼ 0Þ
g0;nðOiÞ

1� IðAið0Þ ¼ 0Þ
g0;nðOiÞ

0� IðAið0Þ ¼ 0Þ
g0;nðOiÞ

0
BBBBBBBB@

1
CCCCCCCCA
:
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Stack these matrices to create a matrix with n� Dj j rows and one column for each component of β.
(d) Fit a pooled logistic regression of �Qd;1;�

2;n (the Yð1Þ vector) on these weighted covariates, suppressing

the intercept and using as offset Logit �Qd;1;
1;n , the logit of the initial predicted values for t ¼ 1 and

k ¼ 1. This gives a fit for multivariate �1. Denote this fit �1;n ¼ ð�β01;n; �β11;n; �β21;nÞ.
(e) Generate �Qd;1;�

1;n by evaluating the logistic regression fit in the previous step at each d 2 D. For
subject i and rule d, evaluate

Expit Logit �Qd;1
1;nðLið0Þ; dð0ÞÞ

� �
þ �

β0
1;n

g0;nðdð0ÞjLið0ÞÞþ
�
β1
1;n

g0;nðdð0ÞjLið0ÞÞ þ
�
β2
1;n � dð0Þð1� sdÞ
g0;nðdð0ÞjLið0ÞÞ

 !
:

This gives an updated vector �Qd;1;�
1;n of length n� Dj j.

5. The previous steps generated �Q�
1;n ¼ ð�Qd;t;�

1;n : d 2 D; t ¼ 1; 2Þ. Stack these vectors to give a single vector
with length equal to the number of subjects n times the number of rules Dj j times the number of time

points ðn� 3� 2Þ. Fit a pooled logistic regression of �Q�
1;n on ðd; tÞ according model mβ (eq. 7), with

weights given by hðd; tÞ (here equal to 1). This gives the pooled TMLE of the target parameter ΨðQÞ.

5 Comparison with alternative estimators

In this section we compare the TMLE described with several alternative estimators available for dynamic
MSMs for survival: non-targeted substitution estimators, IPW estimators, and the stratified TMLE of
Schnitzer et al. [32].

5.1 Non-targeted substitution estimator

The consistency of non-targeted substitution estimators of ΨðQÞ relies entirely on consistent estimation of
the Q portions of the observed data likelihood. For estimators based on the parametric G-formula this
requires correctly specifying parametric estimators for the conditional distributions of all non-intervention
nodes given their parents [7, 11, 12, 41]. For the non-targeted estimator described in Section (3.4), this

requires consistently estimating the literately defined conditional means �Q; ð�Qd;t
k : d 2 D; t 2 τ; k ¼ 1; . . . ; tÞ.

Correct a priori specification of parametric models for �Q in either case is rarely possible, rendering such
non-targeted plug-in estimators susceptible to bias. Further, while machine learning methods, such as
Super Learning, can be used to estimate Q non-parametrically, the resulting plug-in estimator has no theory
supporting its asymptotic linearity, and will generally be overly biased for the target parameter β [21].

5.2 Inverse probability weighted estimators

The IPW estimator described in van der Laan and Petersen [2], Robins et al. [26] is commonly used to
estimate the parameters of a dynamic MSM. In brief, this estimator is implemented by creating one data line

for each subject i, for each t, and for each d for which �Aðt � 1Þ ¼ dð�Lðt � 1ÞÞ. Each data line consists of YiðtÞ,
any functions of ðd; t;ViÞ included as covariates in the MSM, and a weight hðd;t;ViÞIð�Aiðt�1Þ¼dð�Liðt�1ÞÞÞQt�1

j¼0
gnðAiðjÞjPaðAiðjÞÞÞ

. A

weighted logistic regression is then fit, pooling over time and rules d.
The parameter mapping presented here for the TMLE suggests an alternative IPW estimator for dynamic

MSM – namely, implement an IPW estimator for EðYdÞ (possibly within strata of V if V is discrete) for
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d 2 D; t and project these estimates onto mβ. The IPW estimator employed could be either the standard
Horvitz–Thompson estimator:

1
n

Xn

i¼1

Ið�Aiðt � 1Þ ¼ dð�Liðt � 1ÞÞÞQt�1

j¼0
gnðAiðjÞjPaðAiðjÞÞÞ

Yi;

or its bounded counterpart:

Xn

i¼1

Ið�Aiðt � 1Þ ¼ dð�Liðt � 1ÞÞÞQt�1

j¼0
gnðAiðjÞjPaðAiðjÞÞÞ

Yi=
Xn

i¼1

Ið�Aiðt � 1Þ ¼ dð�Liðt � 1ÞÞÞQt�1

j¼0
gnðAiðjÞjPaðAiðjÞÞÞ

Robins and Rotnitzky [14].
The consistency of both IPW estimators relies on having a consistent estimator gn of g0; further, even if

gn is estimated consistently, neither will be asymptotically efficient. Both also suffer from the general
sensitivity of IPW estimators to strong confounding (data sparsity or near positivity violations). Standard
IPW estimators for dynamic MSMs are typically more susceptible to instability in such settings than their
counterparts for static MSMs, due to the limited ability to stabilize weights (with stabilizing function
restricted to hðd; t;VÞ versus hð�Aiðt � 1Þ; t;VÞ.

5.3 Stratified targeted maximum likelihood estimator

Similar to the pooled TMLE, the stratified TMLE [32] also relies on reformulating the statistical
target parameter in terms of iteratively defined conditional means and updating initial fits of these
conditional means using covariates that are functions of an estimator gn of the intervention mechanism.
The stratified and pooled differ, however, in several respects. In particular, in the pooled TMLE the update
step is accomplished by fitting a single multivariate � for each time point t and non-intervention node k,
pooling across all rules of interest d 2 D. In contrast, the stratified TMLE fits a separate � for each time point
t, non-intervention node k, and rule of interest d 2 D. Specifically, the stratified TMLE consists of imple-
menting the longitudinal TMLE of van der Laan and Gruber [19] for EðYdðtÞÞ separately for each time point t
and each rule of interest d 2 D, and then combining these estimates into a fit of mβ.

Let �Qn denote the initial estimator of the iteratively defined conditional means that forms the basis of
the pooled and the stratified TMLEs. Let �Q�

n denote the targeted update of �Qn for the two estimators
(noting that the update is accomplished differently for the pooled and stratified estimators). As long as
their corresponding update Q�

n solves the efficient influence curve equation PnD�ðQ�
n; gnÞ, both the

stratified and the pooled estimators will share the desirable asymptotic properties of a TMLE. Both
estimators will be consistent if either �Qn or gn is a consistent estimator of Q0 or g0, respectively.
Further, both the pooled and the stratified estimators will be asymptotically efficient if both the initial
estimator �Qn and the estimator gn are consistent.

The pooled and stratified estimators may nonetheless differ in both their asymptotic and finite sample
performance. The stratified TMLE uses a more saturated model when updating �Qn than does the pooled
TMLE. Thus if the initial estimator �Qn is misspecified, the update of this initial estimator will be more
extensive (the update will be further from the initial misspecified estimator) for the stratified, as compared
to the pooled, TMLE, resulting asymptotically in a Q�

n that is closer to the true Q0 and thus improving
efficiency (recall that the efficiency bound is achieved at Q0; g0). The extent to which this asymptotic
property translates into meaningful finite sample gains in settings where �Qn is misspecified remains to be
investigated.

On the other hand, in some cases, it is no longer clear how to implement the stratified TMLE. For
example, the target parameter may be defined using a MSM mβðd; t;VÞ, conditional on a subset of baseline
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covariates V. If V is discrete with adequate finite sample support at each value, the stratified TMLE can be
applied by estimating EðYdðtÞjV ¼ vÞ within each stratum v. When V is continuous, however, or has levels
which are not represented in a given finite sample, such an approach will break down for many choices of
weight function hðd; t;VÞ. Similarly, whenever there are some rules d 2 D with no support in a given finite
sample, no data will be available to fit � for some rules of interest, and the key update step will no longer be
possible using the stratified TMLE. Note that such lack of support in finite samples can occur even when the
assumption of positivity in the observed data distribution (3) is satisfied.

In cases where V is discrete and there is support for some but not all rules d 2 D within each stratum of
V, one option is to define a stratified quasi-TMLE using the initial fit �Qd;t

n for those rules, time points, and
strata of V where no data are available to fit �. The estimator, implemented in the simulations below,
remains defined even when not all rules of interest are supported within each stratum of V in a given
sample. However, in such cases, the initial estimator �Qn is only partially updated, and thus Q�

n may no
longer solve the efficient influence curve equation PnD�ðQ�

n; gnÞ, even if gn is a consistent estimator of g0.
If the initial estimator �Qn is poor (for example, if it is a misspecified parametric model), the resulting
estimator of β will be biased. In contrast, the pooled TMLE retains the ability to fit � and thus update �Qn

by pooling over rules d. In other words, both estimators rely on the theoretical positivity assumption on
P0 (3) for identifiability; however, they may respond differently to practical positivity violations in finite
samples.

5.3.1 Numerical illustration

We use a simple simulation to illustrate a setting in which the positivity assumption holds, but many rules
of interest have no support in a given finite sample. In this setting, the stratified estimator will be biased if
the initial estimator �Qn is misspecified. In contrast, the pooled TMLE remains asymptotically linear if gn is a
consistent estimator of g0. Simulation studies comparing the performance of the pooled and stratified
TMLEs as well as IPW estimators under more realistic scenarios are provided in the following section.

We implemented a simulation with observed data consisting of n i.i.d. copies of
O ¼ ðLð0Þ;A ¼ ðAð0Þ; . . . ;Að6ÞÞ;YÞ, where Lð0Þ is a baseline covariate, AðtÞ is a binary treatment assigned
randomly at seven time points (t ¼ 0; . . . ; 6), and Y is a binary outcome. The data for a given individual i
were generated by drawing sequentially from the following distributions:

Lð0Þ,Nð0; 1Þ;

AðtÞ,Bernðp ¼ 0:6Þ for t ¼ 0; . . . ; 6;

Y jLð0Þ;A,Bern p ¼ expit Lð0Þ � 4
1
7

X6
k¼0

AðtÞ
 !2

0
@

1
A

0
@

1
A

0
@

1
A:

The target parameter was defined as the projection of E0ðYd : d 2 DÞ onto marginal structural working

model mβðdÞ ¼ β0 þ β1
P6

t¼0 dðtÞ according to eq. (5), with weight function hðdÞ ¼ 1, D equal to the 27 ¼ 128

possible values of A, and dðtÞ denoting the treatment level aðtÞ assigned by a given rule d at time t.
Stratified and pooled TMLEs for β were implemented using estimators gn and �Qn based on intercept only

logistic regressions; thus �Qn was an inconsistent estimator of �Q0. Table 1 shows estimated bias, bias to
standard error ratio, variance, mean squared error, and 95% confidence interval coverage (using the
variance estimator described in Section 3.7) based on 500 samples of size n ¼ 128. Note that at this sample
size many of the 128 rules of interest have no support in the data in a given sample, while the remainder
have few observations available to fit � in the stratified TMLE. As predicted by its double robust property,
the pooled TMLE remains without meaningful bias despite use of a poor initial estimator �Qn. In contrast, the
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stratified TMLE has bias of approximately double the magnitude of its standard error, posing a substantial
threat to valid inference. The stratified TMLE also exhibits markedly lower variance than its pooled
counterpart, explained by the fact that for those rules d without support in the data, the stratified estimator
uses an intercept only model to estimate �Qd. Although unbiased, the pooled TMLE provides anti-conserva-
tive confidence interval coverage; we return to this point below.

This breakdown of the stratified TMLE in settings with no support for some rules of interest will not
occur if the function h is chosen to give a weight of 0 to any rule (or more generally, any ðd;V; tÞ
combination) without support in the sample. For example, in the illustration above we could have defined
hðdÞ ¼ P0ðA ¼ dÞ and estimated it using the empirical distribution. Unless one is willing to assume that the
MSM mβ is correctly specified, however, choice of h changes the target parameter being estimated [27].
Further, even with this choice of weight function, the estimators may still exhibit different finite sample
performance in setting with marginal data support. We investigate this possibility further in the following
section.

6 Simulation study

6.1 Overview

In this section, we investigate the relative performance of the pooled TMLE, stratified TMLE, and IPW
estimators for the parameters of a marginal structural working model. For each candidate estimator, we
report bias, variance, MSE, and 95% confidence interval coverage estimates based on influence curve
variance estimators. We note that our influence curve-based estimators assume the weight function hðd; tÞ
is known; if the weight function is estimated, the influence curve should be corrected for this additional
estimated component. We investigate two basic data generating processes. Simulation 1 investigates a
simple process, in which the effect of the longitudinal treatment (time to switch) is confounded by baseline
variables only, the outcome is observed at a single time point, and there is no censoring. Simulation 2
introduces more realistic complexity, designed to resemble the data analysis presented in the following
section.

Table 1 Breakdown of stratified TMLE when some rules d 2 D have no support

Pooled TMLE Stratified TMLE

Bias
β̂0 0.1674 −0.9346
β̂1 −0.0563 0.2039

Bias/SE
β̂0 0.1821 −2.3037
β̂1 −0.2326 2.0955

Variance
β̂0 0.8451 0.1646
β̂1 0.0586 0.0095

MSE
β̂0 0.8714 1.0377
β̂1 0.0616 0.0510

95% confidence interval coverage
β̂0 88% 88%
β̂1 22% 33%

Note: True parameter values: β0 ¼ 0:6214 β1 ¼ �0:4452.
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6.2 Simulation 1: baseline confounding only

6.2.1 Data generating process

We implemented a simulation with observed data consisting of n i.i.d. copies of
O ¼ ðLð0Þ;A ¼ ðAð0Þ; . . . ;AðKÞ;YÞ, where Lð0Þ is a baseline covariate, AðtÞ is a binary treatment assigned
at time point t ¼ 0; . . . ;K, and Y is a binary outcome. The data for a given individual were generated by
drawing sequentially from the following distributions:

Lð0Þ,Nð0; 1Þ;

AðtÞjLð0Þ,Bern p ¼ maxðminðLð0Þ þ 0:5;0:62Þ;0:38Þð Þ for t ¼ 0; . . . ;K;

Y jLð0Þ;A,Bern p ¼ expit Lð0Þ � 1
K þ 1

XK

t¼0
AðtÞ



 �
 �
:

In order to investigate the impact of decreasing support in the data (practical violations or near violations of
the positivity assumption), we considered two versions of this data generating process, with K ¼ 2
(Simulation 1a, lower bound on g0 of 0.05) and K ¼ 6 (Simulation 1b, lower bound on g0 of 0.001).

6.2.2 Target parameter

The target parameter was defined as the projection of E0ðYd : d 2 DÞ onto marginal structural working
model mβðdÞ ¼ β0 þ β1

PK
t¼0 dðtÞ according to eq. (5), with D equal to the 2ðKþ1Þ possible values of A, dðtÞ

equal to the treatment level assigned by a given rule d at time, t and weight function hðdÞ ¼ P0ðA ¼ dÞ. In
the case that some rules of interest had no support in a given sample, this choice of weight function (when
estimated as the empirical proportion of subjects that followed rule d) ensured that the IPW estimator
remained defined and that the updated fit Q�

n used by the stratified TMLE solved the efficient influence
curve equation when gn was a consistent estimator of g0.

6.2.3 Estimators

This is a static point treatment problem, and thus a number of additional estimators are available. However,
we use this as a special case of longitudinal dynamic MSMs and investigate the relative performance of three
estimators described in Section 5: the pooled TMLE, the stratified TMLE, and the standard IPW estimator. All
estimators were implemented using two estimators of g0: an estimator based on a correctly specified model for
the conditional distribution of A given Lð0Þ and an estimator using an intercept only model. The estimators gn
were bounded from below at 0.001. TMLEs were implemented using two estimators of �Q0: an estimator based
on main terms logistic regression models using the correct set of parents for a given node as independent
variables (in a slight abuse, we refer to these as “correctly specified”) and an estimator using intercept only
models. Performance was evaluated across 500 samples of size n ¼ 500; 95% confidence interval coverage
was based on the variance estimator described in Section 3.7.

6.2.4 Results

Results for Simulation 1a are shown in Table 2. When both �Qn and gn were based on correctly specified
models, all three estimators were unbiased, had similar variance, and achieved close to nominal coverage.
Table 2 also demonstrates double robustness; when �Qn and gn were based on a misspecified model, both
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TMLEs remained without meaningful bias. In this simulation, both TMLEs continued to achieve close to
nominal coverage even when gn was an inconsistent estimator of g0. In contrast and as expected, the IPW
estimator was substantially biased with poor coverage when gn was based on an intercept only model.

Results for Simulation 1b, with both �Qn and gn based on correctly specified models, are shown in Table
3. In this simulation, in which the lower bound for g0 is 0.001, the IPW estimator was minimally biased and
retained good 95% confidence interval coverage. Interestingly, the performance of the stratified TMLE
suffered in this setting, with bias approximately equal to the standard error, and 95% confidence interval
coverage of 83% and 80% for β0 and β1, respectively. The pooled TMLE remained unbiased and retained
good confidence interval coverage.

Table 2 Simulation 1a

g and Q correct g correct and Q incorrect g incorrect and Q correct

Pl TMLE Str TMLE IPW Pl TMLE Str TMLE IPW Pl TMLE Str TMLE IPW

Bias
β̂0 −0.0047 −0:0037 0:0094 −0.0260 −0:0352 0:0094 −0.0083 −0:0108 −0.4578
β̂1 0:0024 0:0020 −0.0038 0:0178 0:0238 −0.0038 0:0056 0:0074 0:2994

Bias/SE
β̂0 −0.0258 −0:0204 0:0453 −0.1450 −0:1953 0:0453 −0.0485 −0:0637 −2.4870
β̂1 0:0226 0:0197 −0.0336 0:1725 0:2306 −0.0336 0:0578 0:0767 2:8280

Variance
β̂0 0:0334 0:0326 0:0427 0:0321 0:0325 0:0427 0:0295 0:0289 0:0339
β̂1 0:0109 0:0106 0:0130 0:0106 0:0107 0:0130 0:0093 0:0093 0:0112

MSE
β̂0 0:0333 0:0325 0:0427 0:0327 0:0336 0:0427 0:0295 0:0290 0:2434
β̂1 0:0109 0:0105 0:0130 0:0109 0:0112 0:0130 0:0094 0:0093 0:1008

95% Cl Coverage
β̂0 95% 95% 97% 96% 96% 97% 97% 96% 29%
β̂1 95% 95% 96% 96% 95% 96% 97% 97% 17%

Notes: g0 >0:05. True parameter values: β0 ¼ 0:0012 β1 ¼ �0:2771; Pl TMLE: Pooled TMLE; Str TMLE: Stratified TMLE.

Table 3 Simulation 1b

Pooled TMLE Stratified TMLE IPW

Bias
β̂0 −0.0025 −0:2622 −0.0486
β̂1 −0.0007 0:0744 0:0161

Bias/SE
β̂0 −0.0092 −1:0907 −0.1618
β̂1 −0.0103 1:1504 0:1991

Variance
β̂0 0:0716 0:0578 0:0904
β̂1 0:0051 0:0042 0:0065

MSE
β̂0 0:0715 0:1264 0:0926
β̂1 0:0051 0:0097 0:0068

95% Cl coverage
β̂0 98% 83% 97%
β̂1 97% 80% 96%

Notes: g0 >0:001; Both g and Q are correct; True parameter values: β0 ¼ 0:0014 β1 ¼ �0:1187.
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6.3 Simulation 2: resembling data analysis

In this simulation, we used a data generating process designed to resemble the data analysis presented in
the following section, in which the goal was to investigate the effect of delayed switch to a new antire-
troviral regimen on mortality among HIV-infected patients who have failed first line therapy. The data
generating process thus contains both baseline and time-dependent confounders of a longitudinal binary
treatment (time to switch), a repeated measures binary outcome (survival over time), and informative right
censoring due to two causes (database closure and loss to follow up).

6.3.1 Data generating process

We implemented a simulation with observed data consisting of n i.i.d. copies of

O ¼ ðLð0Þ;Að0Þ; Lð1Þ;Að1Þ; . . . ; LðKÞ;AðKÞ;YðK þ 1ÞÞ;
for K ¼ 9. Here, Lð0Þ ¼ ðW ;CD4ð0ÞÞ and LðtÞ ¼ ðYðtÞ;CD4ðtÞÞ, where W was a non-time-varying baseline
covariate (W ¼ ðW1; . . . ;W4Þ, representing baseline age, sex, and disease stage), CD4ðtÞ was a time-varying
covariate representing most recent measured CD4 count at time t (square root transformed), and YðtÞ was
an indicator of death by time t. The intervention nodes for a given time point t were
AðtÞ ¼ ðC1ðtÞ;C2ðtÞ;A1ðtÞÞ, where C1ðtÞ was an indicator of database closure by time t, C2ðtÞ was an indicator

of loss to follow up by time t, and A1ðtÞ was an indicator of having switched to second line therapy by time
t. In brief, the data for a given individual were generated by first drawing baseline characteristics W, then
for each time point t, for as long as the subject remained alive and uncensored,
1. Drawing a time updated CD4 count CD4ðtÞ given W, prior CD4 counts, and regimen status at the prior

time point (A1ðt � 1Þ)
2. Determining censoring due to database closure C1ðtÞ using a Bernoulli trial with probability dependent

on W.
3. If still uncensored, determining censoring due to loss to follow up C2ðtÞ using a Bernoulli trial

with probability dependent on W, prior CD4 count and regimen status at the prior time point
(A1ðt � 1Þ).

4. If still uncensored and not yet switched, determining switching using a Bernoulli trial with probability
dependent on W and prior CD4 count.

5. Determining death using a Bernoulli trial with probability dependent on W, prior CD4 counts and
regimen status AðtÞ

The full data generating process is provided in Appendix D. Coefficients in the data generating process were
chosen to approximate the degree of censoring, treatment, and death in the analysis data set, as detailed in
Appendix D, Tables 7 and 9. The data generating process results in a true intervention mechanism g0 not
bounded away from 0.

6.3.2 Target parameter

The target parameter was defined as the projection of the counterfactual survival curve for each switch time,

ðEðYdðtÞÞ : d 2 D; t ¼ 1; . . . ; 10Þ onto marginal structural working model Logit mβðd; tÞ ¼ β0 þ β1t þ β2ðdðt � 1Þðt � sdÞÞ
according to eq. (5), where we use dðtÞ to denote the value aðtÞ assigned by rule d, sd to denote the switch time
assignedby ruled, andwithD consisting of each possible switch time, f0; . . . ; 10g combinedwith an intervention
to prevent censoring. We used the following weight function:
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hðd; tÞ ¼ P0ð�Aðt � 1Þ ¼ �aðt � 1ÞÞ
nt

Iðt< t�Þ;

where nt was the number of unique values �aðt � 1Þ compatible with d 2 D, t� is the first time point at which
all subjects have either died or been censored, and both P0ð�Aðt � 1Þ ¼ �aðt � 1ÞÞ and t� were estimated with
their empirical counterparts. This weight function gave 0 weight to rules without support in a given sample.
It further avoided up-weighting specific values �aðt � 1Þ proportional to the number of rules (assigned switch
times) that they were compatible with.

6.3.3 Estimators

We implemented the pooled TMLE, the stratified TMLE, the IPW estimator based on estimating
EðYdðtÞ : d 2 DÞ using the bounded Horvitz–Thompson estimator and projecting the resulting estimates
onto the model mβ (referred to as “Stratified IPW”) and the standard IPW estimator for dynamic MSM
(referred to as a “Standard IPW” estimator).

The intervention rules d 2 D could be considered static, in that they assign a fixed vector of treatment
decisions �a irrespective of a subject’s covariate values. However, when the target parameter is defined using
a MSM on survival, a static IPW estimator cannot be implemented in the standard way (fitting a weighted
pooled regression of YðtÞ on observed treatment history �Aðt � 1Þ) because the full �Aðt � 1Þ is not observed
for subjects who die before time t. As noted by Picciotto et al. [42], one option, adopted by us here, is to
instead define the interventions of interest as dynamic (switch at time sd if still alive).

All estimators were implemented using an estimator gn based on a correctly specified parametric model
for g0, but bounding the resulting estimates from below at 0.01 in order to ensure that the denominator in
the covariate used in the updating step remained bounded away from 0. The TMLEs were implemented
using estimators of �Q0 based on main terms logistic regression models using the correct set of parents for a
given node as independent variables (not equivalent to use of a correctly specified parametric model to
estimate �Q0). The performance of each estimator was evaluated across 500 samples of size n ¼ 2; 627,
corresponding to the sample size in the data analysis. 95% confidence interval coverage was based on the
variance estimator described in Section 3.7; calculation of non-parametric bootstrap-based coverage was
computationally prohibitive.

6.3.4 Results

Results for Simulation 2 are shown in Table 4. In this simulation, both the pooled and the stratified TMLEs
were essentially unbiased for all coefficients, and the two TMLEs had comparable MSEs. Both TMLEs
exhibited less than nominal 95% confidence interval coverage when using influence curve-based variance
estimators. The anti-conservative performance of the influence curve-based variance estimator is likely due
to the presence of practical positivity violations and relatively rare outcomes; the fact that the weight
function was treated as known may also make a small contribution. Further work is needed to develop
improved diagnostics and variance estimators in these settings.

In contrast, both IPW estimators were substantially biased for β2, which reflected the treatment effect,
despite use of an estimator gn based on a correctly specified parametric model. Both IPW estimators also
showed higher MSE for β2, and achieved 95% confidence interval coverage for β2 substantially below that of
the TMLEs. This finding is consistent with the known susceptibility of IPW estimators to positivity violations
and data sparsity, exacerbated by the limited ability when using a dynamic regime formulation to choose
an effectively stabilizing weight function. Across simulations, the median minimum value of gn used by IPW
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prior to bounding at 0.01 was 0.000297; 1.55% of values of gn used by IPW were less than 0.01. Tables 8 and
10, provide further details on data support and number of events.

7 Data analysis

We analyzed data from the International Epidemiological Databases – Southern Africa in order to investi-
gate the effect of switching to second line therapy on mortality among HIV-infected patients with immu-
nological failure on first line antiretroviral therapy. The data set and clinical question are described in detail
in Gsponer et al. [1]. In brief, data were drawn from clinical care facilities in Zambia and Malawi, in which
HIV-infected patients were followed longitudinally in clinic and data were collected on baseline demo-
graphic and clinical variables (sex, age, and baseline disease stage), time-varying CD4 count, and time-
varying treatment, summarized here as switch to second line therapy. Death was independently reported.
The 2,627 subjects meeting WHO immunological failure criteria were included in the current analysis
beginning at time of immunologic failure. Following common practice and prior analysis, time was
discretized into 3-month intervals; time updated CD4 count was coded such that CD4 count for an interval
preceded switching decisions in that interval. Data on a subject were censored at time of database closure
or after four consecutive intervals without clinical contact.

The data structure and target parameter were identical to those described in Simulation 2, with
W ¼ ðW1;W2;W3;W4Þ, W1 equal to sex, W2 and W3 representing two levels of a three-level categorical
age variable (< 30; 30� 39; and > 39), and W4 equal to disease stage. The analysis was implemented under
the causal model assumed for Simulation 2; in particular assuming that monitoring times did not affect the
outcome other than via effects on switching. We acknowledge that this assumption may not hold; however,
relaxing it introduces a number of additional complications, as described in the Appendix. We implemented

Table 4 Simulation 2: resembling data analysis

Pl TMLE Str TMLE Stan IPW Str IPW

Bias
β̂0 0:0000 0:0060 −0.0239 −0:0501
β̂1 −0.0041 −0:0040 0:0179 0:0309
β̂2 −0.0006 0:0107 0:0984 0:0880

Bias/SE
β̂0 0:0000 0:0218 −0.0867 −0:1829
β̂1 −0.0849 −0:0827 0:4118 0:7046
β̂2 −0.0096 0:1654 2:0741 1:8708

Variance
β̂0 0:0738 0:0750 0:0758 0:0751
β̂1 0:0024 0:0024 0:0019 0:0019
β̂2 0:0037 0:0042 0:0022 0:0022

MSE
β̂0 0:0736 0:0749 0:0762 0:0775
β̂1 0:0024 0:0024 0:0022 0:0029
β̂2 0:0037 0:0043 0:0119 0:0099

95% CI coverage
β̂0 92% 92% 93% 94%
β̂1 82% 80% 90% 89%
β̂2 80% 77% 35% 42%

Notes: True parameter values: β0 ¼ �4:9525 β1 ¼ 0:2962 β2 ¼ �0:2168; Pl TMLE: Pooled TMLE; Str TMLE: Stratified
TMLE; Stan IPW: Standard IPW; Str IPW: Stratified IPW.
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the estimators described in Simulation 2: pooled and stratified TMLEs and standard and stratified IPW
estimators. Estimators of g0 and �Q0 were based on main term logistic regression models, analogous to
Simulation 2. Given the results in Simulation 2 suggesting the poor performance of the influence curve-
based variance estimator, we also estimated the variance using a non-parametric bootstrap.

Results are given in Table 5. The IPW estimates for the effect of switching on mortality (β2) are close to
zero and non-significant. Both TMLE point estimates suggest a 0.88 relative odds of death per 3-month
earlier switch, and all except for the stratified TMLE combined with bootstrap-based variance estimation
were significant at the α ¼ 0:05 level. Such a protective effect of switching is consistent with clinical
knowledge. Interestingly, these results appear consistent with those of Simulation 2, which suggested
that the IPW estimator was substantially positively biased, underestimating the harm of delayed switch,
while both TMLEs performed well in terms of bias. In summary, our results in both the simulation and data
analysis are consistent with the TMLEs controlling for measured confounders more completely than the
corresponding IPW estimators.

The poor coverage observed in Simulation 2, despite absence of bias for the TMLEs, suggests that the
influence curve-based variance estimators may be systematically underestimating the true variance in this
analysis. While the non-parametric bootstrap offers an alternative approach, it is not expected to resolve the
challenge of anti-conservative variance estimation in the setting of practical positivity violations.
Intuitively, rare treatment/covariate combinations, despite being theoretically possible, may simply not
occur in a given finite sample and as a result, the corresponding extreme weights implied by these
combinations will not occur. Because the non-parametric bootstrap resamples from the same finite sample,
it fails to address the underlying problem. Indeed, the bootstrap-based confidence intervals in the data
analysis were slightly smaller than confidence intervals based on the influence curve. Thus in this realistic
setting of rare outcomes and moderately strong confounding, our results caution against reliance on either
approach to variance estimation, for either IPW or TML estimators, and suggest that additional work
developing robust variance estimators in this setting is urgently needed.

In addition to the issues raised above, limitations of the analysis include the potential for unmeasured
confounding by factors such as unmeasured health status and adherence, as well as bias due to incomplete

Table 5 Data analysis

Estimate 95% CI1 95% CI2 95% CI3 95% CI4

Pooled TMLE
β̂0 –4.8291 –5:2235 –4.4348 –5:2157 –4.5436
β̂1 0:1874 0:1390 0:2357 0:1499 0:2291
β̂2 –0.1246 –0:2275 –0.0217 –0:2259 –0.0496

Stratified TMLE
β̂0 –4.8382 –5:2357 –4.4407 –5:3582 –4.5790
β̂1 0:1883 0:1396 0:2370 0:1560 0:2876
β̂2 –0.1262 –0:2303 –0.0221 –0:2110 0:0184

Standard IPTW
β̂0 –4.9166 –5:3136 –4.5196 –5:2692 –4.6413
β̂1 0:2053 0:1587 0:2519 0:1673 0:2429
β̂2 0:0238 –0.0696 0:1171 –0.0575 0:0900

Stratified IPTW
β̂0 –5.0811 –5:5020 –4.6601 –5:5260 –4.8252
β̂1 0:2538 0:1970 0:3105 0:2189 0:3274
β̂2 0:0153 –0.0539 0:0844 –0.0374 0:0784

Notes: CI1: Lower 95% influence curve-based confidence interval. CI2: Upper 95% influence curve-based confidence
interval. CI3: Lower 95% bootstrap confidence interval. CI4: Upper 95% bootstrap confidence interval.
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health reporting, resulting in censoring due to loss to follow up that directly depends on death [43, 44].
These results also do not contradict the previous published results of Gsponer et al. [1], which found a
protective effect of switching using a static IPW estimator for a hazard MSM; such an IPW estimator might
perform substantially better than the dynamic IPW estimator for a survival MSM implemented here.

8 Discussion

In summary, we have presented a pooled TMLE for the parameters of static and dynamic longitudinal MSMs
that builds on prior work by Robins [13, 29] and Bang and Robins [22]. We evaluated the performance of this
estimator using simulated data and applied it, together with alternatives, in a data analysis. Both theory
and simulations suggest settings in which the pooled TMLE offers advantages over alternative estimators.
Software implementing this estimator, together with competitors, is included in supplementary files and is
publicly available as part of R library ltmle (http://cran.r-project.org/web/packages/ltmle/).

The pooled TMLE presented in this paper, together with corresponding open source software, provides
a new tool for estimation of the parameters of static or dynamic MSMs. It has clear theoretical advantages
over available alternatives. Unlike IPW and augmented-IPW estimators, it is a substitution estimator. Unlike
IPW estimators, it is double robust and asymptotically efficient depending on the initial estimators of g and
Q. Unlike the previously proposed stratified TMLE, it does not require support in the data for every rule of
interest and remains defined in the case that the target parameter is defined using a marginal structural
working model conditional on a continuous baseline covariate.

In settings where some subset of discrete intervention rules has adequate support in a given sample, an
alternative approach is to compare only this subset of rules [2]. However, in many settings smoothing over a
large number of poorly supported rules is appropriate. For example, for a set of rules indexed by a
continuous or multiple level ordered variable, smoothing over this variable provides a way to define a
causal effect of interest despite inadequate support to estimate the counterfactual outcome under any of
these rules individually.

The TMLE presented in this paper was developed for a causal model in which the non-intervention
variables may be a function of the entire observed past (PaðLðkÞÞ ¼ ð�Aðk � 1Þ; �Lðk � 1ÞÞ) and the interven-
tion variables may be a function of some subset of the observed past (PaðAðkÞÞ � ð�Aðk � 1Þ; �LðkÞÞ) – in other
words, for a model in which exclusion restrictions were assumed, if at all, only for the intervention
variables. In some cases, a causal model that also restricts the parent set of the non-intervention variables
to a subset of the observed past may be appropriate. This smaller model is included in the larger model
assumed in the current paper. As a result, while the TMLE developed for the larger model will still be valid,
it will no longer be efficient.

Our simulations suggest that both stratified and pooled TMLEs may outperform both the IPW estimator
typically used for dynamic MSMs, as well as an alternative “stratified” IPW estimator, in some settings with
sparse data/near positivity violations. However, further work is needed to confirm this preliminary observa-
tion. Although the theory in this paper was developed for the general case of dynamic MSMs, including
models of the time-specific hazard or survival functions, we focused our software implementation, exam-
ples, and simulations on MSMs for survival. The practical performance of the pooled TMLE relative to
alternative estimators also remains to be investigated for the case of static and dynamic MSMs on the
hazard. It also remains to implement and evaluate the relative performance of the alternative pooled TMLE
described in Appendix C, in which the updating step pools not only over all rules of interest but also over
all time points. Finally, the relative performance of the TMLE compared to double robust efficient estimat-
ing equation-based estimators for longitudinal MSM parameters, including those of Robins [13, 29] and
Bang and Robins [22], remains to be evaluated.

Importantly, our simulations and data analysis illustrate the need for improved variance estimators for
both TMLE and IPW in settings with moderately strong confounding, multiple time points, and relatively
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rare outcomes. Improved approaches to variance estimation and valid inference, as well as appropriate
diagnostics to warn applied practitioners of settings in which coverage is likely to be poor, are crucial
research priorities.

Acknowledgments: This work was supported by NIH Grant #U01AI069924 (NIAID, NICHD, and NCI)
(PIs: Egger and Davies), the Doris Duke Charitable Foundation Grant #2011042 (PI: Petersen), and NIH
Grant #R01AI074345-06 (NIAID) (PI: van der Laan).

Appendix A

Notation

Table 6 Partial list of notation

Variable Description

Observed data
LðtÞ covariates at time t
YðtÞ � LðtÞ outcome at time t
AðtÞ ¼ ðA1ðtÞ;A2ðtÞÞ intervention at time t
A1ðtÞ treatment at time t
A2ðtÞ right censoring at time t
�AðkÞ ¼ Að0Þ; . . . ;AðkÞ history of intervention nodes t ¼ 0; . . . ; k
�LðkÞ ¼ Lð0Þ; . . . ; LðkÞ history of non-intervention nodes t ¼ 0; . . . ; k
O ¼ ðLð0Þ; Að0Þ; . . . ; LðKÞ;AðKÞ; LðK þ 1ÞÞ observed data structure
PaðLðkÞÞ ¼ �Lðk � 1Þ; �Aðk � 1Þ parents of non-intervention nodes LðkÞ
PaðAðkÞÞ � �LðkÞ; �Aðk � 1Þ parents of intervention nodes AðkÞ
Counterfactuals
D set of dynamic intervention rules
d 2 D intervention rule
Ld counterfactual L under rule d
Yd counterfactual Y under rule d

Statistical counterparts
Ld random variable with distribution Pd

0

equal to Ld in distribution under sequential randomization assumption (SRA) (2)
Yd outcome-component of Ld

Marginal structural working model
mβðd; t;VÞ working model for ðE0ðYdðtÞjVÞ : d 2 D; t 2 τÞ
τ index set of time points (often τ ¼ 1; . . . ;K þ 1)
V “effect modifier” of interest, a function of Lð0Þ
Distributions
PO;U;0 distribution of ðO;UÞ defined by structural causal model (SCM)
P0 distribution of O
Pd;0 distribution of counterfactual Ld
Pd
0 G-computation formula for post-intervention distribution of L under rule d equal to

Pd;0 under SRA (2)
QLðkÞ;0 distribution of LðkÞjPaðLðkÞÞ
Q0:k;

Qk
j¼0 QLðjÞ;0

Q0;Q0:Kþ1 non-intervention factor of P0 ¼ Q0g0
gAðkÞ;0 distribution of AðkÞjPaðAðkÞÞ

(continued )
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Appendix B

The efficient influence curve of the statistical target parameter

We have the following theorem for a general parameter ΨðPÞ ¼ f ð�QLð1Þ ¼ ð�Qd;t
Lð1Þ : d; tÞ;QLð0ÞÞ.

Theorem 1 Consider a parameter Ψ : M ! IR J that can be represented as ΨðPÞ ¼ f ð�QLð1Þ;QLð0ÞÞ, where
�QLð1Þ ¼ ð�Qd;t

Lð1Þ ¼ EðYdðtÞjLð0ÞÞ : d; tÞ. Let Q ¼ ð�QLð1Þ;QLð0ÞÞ. Assume that f ðÞ is such that Ψ is pathwise differ-
entiable. Let f 0d;tðQÞðwÞ ¼ d

d�Qd;t
Lð1ÞðwÞ

f ð�QLð1Þ;QLð0ÞÞ be the partial derivative of f with respect to

Table 6 (Continued )

Variable Description

g0:k;0 ;
Qk

j¼0 gAðjÞ;0
g0 ;g0:K intervention mechanism factor of P0 ¼ Q0g0
QLð0Þ;n empirical distribution of Lið0Þ; i ¼ 1; . . . ;n

Models
MF SCM for PO;U;0 defines causal assumptions: PO;U;0 2 MF

M statistical model for P0 defines statistical assumptions: P0 2 M
Functions and parameters
ΨF : MF ! IR J causal target parameter mapping
ΨF ðPO;U;0Þ causal target parameter value (causal quantity)
Ψ : M ! IR J statistical target parameter mapping
ΨðP0Þ ¼ Ψð�Q0;QLð0Þ;0Þ ¼ ψ0 ¼ β0 target parameter value equals ΨF ðPO;U;0Þ under SRA (2) and positivity (3)
fLðkÞ structural equation ðPaðLðkÞÞ;ULðkÞÞ7!LðkÞ
fAðkÞ structural equation ðPaðAðkÞÞ;UAðkÞÞ7!AðkÞ
dk dynamic intervention �LðkÞ7!Ak
h weight function ðd; t;VÞ7!IR

h1 hðd; t;VÞ
d
dβmβðd;t;VÞ
mβð1�mβÞ for logistic working model mβ

h1 hðd; t;VÞ d
dβmβðd; t;VÞ for linear working model mβ

Efficient influence curve
D�ðPÞ ¼ D�ð�Q;QLð0Þ;gÞ efficient influence curve of Ψ at P equals influence curve of TMLE ΨðQ�

nÞ when Q�
n; gn

are both consistent

Least favorable submodels
f�Qd;t

k ð�;gÞ : �g submodel through �Qd;t
k at parameter value � ¼ 0 used to update initial estimate of �Qd;t

k

in TMLE

Loss functions
Ld;t;k;�Qd;t

kþ1
ð�Qd;t

k Þ loss function for �Qd;t
k relies on estimator of previous �Qd;t

kþ1 used to fit � of least
favorable model �Qd;t

k ð�;gÞ
Others
�Qd;t
LðkÞ ¼ �Qd;t

k EPðYdðtÞj�Ldðk � 1ÞÞ
�Q; ð�Qd;t

k : d 2 D; t 2 τ; k ¼ 1; . . . ; tÞ
�Q1 ¼ ð�Qd;t

Lð1Þ : d 2 D; t 2 τÞ ðEPðYdðtÞjLð0ÞÞ : d 2 D; t 2 τÞ
Q redefined as ð�Q1;QLð0ÞÞ when used in ΨðQÞ
Estimators
gn estimator of g0
Qn initial estimator of Q0
�Qn initial estimator of �Q0

Q�
n ¼ ð�Q�

1;n;QLð0Þ;nÞ updated estimator of Q0, targeted at Ψ
ΨðQ�

nÞ ¼ ψ�
n TMLE of ψ0
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�Qd;t
Lð1ÞðwÞ ¼ EðYdðtÞjLð0Þ ¼ wÞ at Q. Let D�

Lð0ÞðQÞ be the influence curve of f ð�QLð1Þ;QLð0Þ;nÞ as an estimator of
f ð�QLð1Þ;QLð0ÞÞ, where QLð0Þ;n is the empirical distribution of Lið0Þ, i ¼ 1; . . . ; n.

Then, the efficient influence curve of Ψ at P can be represented as follows:

D�ðPÞ ¼ D�
Lð0ÞðQÞ þ

X
d;t

f 0d;tðLð0ÞÞ
Xt

k¼1

Ið�AðkÞ ¼ �dkð�LðkÞÞÞ
g0:k

ð�Qd;t
Lðkþ1Þ � �Qd;t

LðkÞÞ

Proof: The efficient influence curve of the parameter EðYdðtÞjLð0Þ ¼ wÞ (assuming discrete random variable
Lð0Þ) is given by

D�
d;t;w ¼ IðLð0Þ ¼ wÞ

QLð0ÞðwÞ
Xt

k¼1

Ið�AðkÞ ¼ �dkð�LðkÞÞÞ
g0:k

ð�Qd;t
Lðkþ1Þ � �Qd;t

LðkÞÞ

(appendix A3, van der Laan and Rose [20]). By the delta-method, the efficient influence curve of
f ð�QLð1Þ;QLð0ÞÞ is thus given by

D� ¼ D�
Lð0Þ þ

X
w;d;t

f 0d;tðwÞD�
d;t;w

¼ D�
Lð0Þ þ

X
w;d;t

f 0d;tðwÞ IðLð0Þ ¼ wÞ
QLð0ÞðwÞ

Xt

k¼1

Ið�AðkÞ ¼ �dkð�LðkÞÞÞ
g0:k

ð�Qd;t
Lðkþ1Þ � �Qd;t

LðkÞÞ

¼ D�
Lð0Þ þ

X
d;t

f 0d;tðLð0ÞÞ
Xt

k¼1

Ið�AðkÞ ¼ �dkð�LðkÞÞÞ
g0:k

ð�Qd;t
Lðkþ1Þ � �Qd;t

LðkÞÞ

(appendix A3, van der Laan and Rose [20]). This completes the proof. □
In order to determine the partial derivative of the function f and D�

Lð0Þ the following is useful.
Suppose that, as in our examples, f ðQÞ ¼ argmaxβ Mðβ;QÞ for some function M, and suppose that

Q ¼ ð�Q;QLð0ÞÞ. Then βðQÞ ¼ f ðQÞ solves the equation 0 ¼ d
dβMðβ;QÞ;Uðβ;QÞ. By the implicit function

theorem we have that

d
dQ

βðQÞ ¼ � d
dβ

Uðβ;QÞ
� �1 d

dQ
Uðβ;QÞ:

In particular,

d
d�Q

βð�Q;QLð0ÞÞ ¼ � d
dβ

Uðβ;QÞ
� �1 d

d�Q
Uðβ;QÞ;

and

d
dQLð0Þ

βðQÞ ¼ � d
dβ

Uðβ;QÞ
� �1 d

dQLð0Þ
Uðβ; �Q;QLð0ÞÞ:

We can now apply our general Theorem 1 to the example with YðtÞ 2 ½0; 1� and the logistic regression
working MSM in which βðQÞ solves the equation Uðβ; �QLð1Þ;QLð0ÞÞ with

Uðβ; �QLð1Þ;QLð0ÞÞ;EQLð0Þ

X
t

X
d2D h1ðd; t;VÞð�Qd;t

Lð1ÞðLð0ÞÞ �mβðd; t;VÞÞ:

The same equation applies for the linear working MSM but with the other definition of h1 as mentioned
above. Define

cðQÞ;EQLð0Þ

X
t;d

h1ðd; t;VÞ d
dβ

mβðd; t;VÞ:
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Note that � d
dβUðβ;QÞ ¼ cðQÞ. Thus,

D�
Lð0ÞðQÞ ¼ cðQÞ�1

X
t;d

h1ðd; t;VÞð�Qd;t
Lð1Þ �mβðd; t;VÞÞ;

and

f 0d;tðLð0ÞÞ ¼ cðQÞ�1h1ðd; t;VÞ:

This proves the following corollary [13, 22, 29].

Corollary 1 Consider the target parameter ΨðQÞ defined by eq. (5). This target parameter is pathwise
differentiable at P with efficient influence curve given by

D�ðPÞ ¼ cðQÞ�1
X

t;d
h1ðd; t;VÞð�Qd;t

Lð1Þ �mβðd; t;VÞÞ

þcðQÞ�1
X

t

Xt

k¼1

X
d
h1ðd; t;VÞ Ið

�AðkÞ ¼ �dkð�LðkÞÞÞ
g0:k

ð�Qd;t
Lðkþ1Þ � �Qd;t

LðkÞÞ

The efficient influence curve is double robust. In other words we have that � P0D�ðQ; g0Þ ¼ ΨðQÞ � ψ0, so
that, in particular, if ΨðQÞ ¼ ψ0, then P0D�ðQ; g0Þ ¼ 0. As a consequence, our TMLE ΨðQ�

nÞ will be a
consistent estimator of ψ0 if either Q�

n is consistent for Q0 or gn is consistent for g0 [38].

Appendix C

An alternative pooled TMLE that only fits a single � to compute the update

The TMLE described in the main text relies on a separate � for each k ¼ 1; . . . ; t and for each t ¼ 1; . . . ;K þ 1

resulting in a collection of
PKþ1

t¼1 t estimators of � that define the TMLE. A nice feature of this TMLE is that it
exists in closed form. The following alternative TMLE only relies on fitting a single �, but in this case the

updating needs to be iterated until convergence. First construct an initial estimator �Q0
n of

�Q0 ¼ ð�Qd;t
k;0 : k ¼ 1; . . . ; t; d 2 D; t ¼ 1; . . . ;K þ 1Þ as described above. Now, consider the above-presented

submodel ð�Q0
nð�Þ ¼ ð�Qd;t

k;nð�; gÞ : �Þ through �Q0
n at � ¼ 0. Compute

�0n ¼ argmin �

XKþ1

t¼1

X
d2D

Xt

k¼1
Ld;t;k;�Qd;t;0

kþ1;n
ð�Qd;t;0

k;n ð�; gnÞÞ;

where the nuisance parameters of the loss function are estimated with the initial estimator �Q0
n. Note that �0n

can be fit with a pooled logistic regression as stated above. This yields an update �Q1
n ¼ �Q0

nð�0nÞ. In general, at
the mth step, given the estimator �Qm

n , we compute

�mn ¼ argmin �

XKþ1

t¼1

X
d2D

Xt

k¼1
Ld;t;k;�Qd;t;m

kþ1;n
ð�Qd;t;m

k;n ð�; gnÞÞ;

and the resulting update �Qmþ1
n ¼ �Qm

n ð�mn ; gnÞ. This updating process is iterated until �mn 
 0. The resulting
final update is denoted with �Q�

n and is the TMLE of �Q0. By construction, we have that this TMLE also solves
the efficient influence curve equation PnD�ðQ�

n; gnÞ ¼ 0 with arbitrary precision. The TMLE of ψ0 is now
computed with the corresponding plug-in estimator Ψð�Q�

n;QLð0Þ;nÞ, as above. The potential advantage of this
alternative TMLE is that it is able to smooth across all time points t and k when computing the update,
while the closed form TMLE presented above only smoothes over the rules d 2 D.
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Appendix D

Supplementary material, Simulation 2

Overview

Below we describe the true data generating process used in Simulation 2 in greater detail. We also provide a
summary table comparing the support and number of events over time in the simulated data and in the real
data set it was designed to resemble.

In our presentation of the simulation below we have altered our notation slightly from that presented in
the paper to match notation in the accompanying R code. Specifically, LðtÞ is used to refer to time varying
CD4 count CD4ðtÞ. The observed data generated on a given subject consisted of

O ¼ ðW;Yð0Þ; Lð0Þ;C1ð0Þ;C2ð0Þ;A1ð0Þ; . . . ;Yð9Þ; Lð9Þ;C1ð9Þ;C2ð9Þ;A1ð9Þ;Yð10ÞÞ

Further, the data generating process included a non-monotone monitoring process (denoted MðtÞ) designed
to mimic when subjects come into clinic, have their CD4 counts measured, and have an opportunity to
switch regimens. This adds several additional complexities. First, observed CD4 count, denoted here as LðtÞ
(and in the main text as CD4ðtÞ), is only updated to reflect the true underlying CD4 count process when a
patient is seen. Below, L̂ðtÞ is used to denote the true underlying CD4 value. Subsequent CD4 values and
death are functions of this true underlying value, while the intervention nodes are functions of the observed
values only. Because both switching and monitoring are generated only in response to the observed past,
however, this time-dependent non-monotone monitoring process is a multivariate instrumental variable,
warranting its exclusion from the adjustment set. Further, its inclusion would both be expected to harm
efficiency and introduce positivity violations (for example, subjects not seen in clinic at a given time point
have zero probability of switch at that time point). The non-monotone monitoring process, while retained to
mimic the data analysis, is thus omitted from the observed data and presentation in the main text in order
to simplify discussion. Second, in accordance with common practice in clinical cohort data, censoring due
to loss to follow up C2 is defined deterministically based on not being seen in clinic for a certain number of
consecutive time points. Finally, a subject can only switch treatment when seen (A1ðtÞ is only at risk
of jumping when MðtÞ ¼ 1). As above, W ¼ ðW1;W2;W3;W4Þ and YðtÞ denotes an indicator of death by
time t.

Data generating process

Data were generated for a given individual according to the following process, where �1 and �2 are draws
from a standard normal distribution, and all binary variables were drawn from a Bernoulli distribution with
the conditional probabilities given below. Data for a given subject were drawn sequentially until either YðtÞ
jumped to one, C1ðtÞ jumped to 1, C2ðtÞ jumped to 1, or Yð10Þ was generated. Tables 7 and 8 compare the
number of deaths in the simulated data (median of 501 samples) and actual data among patients following
a given regime.

PðW1 ¼ 1Þ ¼ 0:3

PðW2 ¼ 1jW1 ¼ 0Þ ¼ 0:5

PðW3 ¼ 1Þ ¼ 0:5

PðW4 ¼ 1Þ ¼ 0:3

M. Petersen et al.: TMLE for Dynamic Marginal Structural Models 181

Brought to you by | University of Cape Town Libraries
Authenticated

Download Date | 10/23/14 2:57 PM



PðYðtÞ ¼ 1jW ; L̂ðt � 1Þ;A1ðt � 1ÞÞ ¼

0; if t ¼ 0
�5:8� 0:1W1 � 0:1W2 þ 0:1W3 � 0:2W4 � 0:7L̂ðt � 1Þ � 0:9A1ðt � 1Þ; if t > 0

�

L̂ðtÞ ¼

max minð�1ðtÞ �W4; 4Þ;�4ð Þ; if t ¼ 0

max min �1ðtÞ þ 0:1W1 � 0:1W2 � 0:1W3 � 0:5W4 þ 0:9L̂ðt � 1Þ þ A1ðt � 1Þ; 4
� �

;�4
� �

;

if t > 0

8>><
>>:
PðMðtÞ ¼ 1jW ; Lðt � 1Þ;A1ðt � 1ÞÞ ¼

1; if t ¼ 0

expitð0:4þ 0:1W1 � 0:2W2 þ 0:3W3 þ 0:1W4 � 0:1Lðt � 1Þ þ 0:2A1ðt � 1Þ; if t > 0

(

LðtÞ ¼ L̂ðtÞ; if MðtÞ ¼ 1

Lðt � 1Þ; if MðtÞ ¼ 0

(

PðC1ðtÞ ¼ 1jW ; Lð0ÞÞ ¼ 1� expit 2þ 0:1W1 þ 0:2W2 þ 0:1W3 þ 0:1W4 þ 0:1Lð0Þð Þ

C2ðtÞ ¼ I Mðt � 2Þ ¼ 0 and Mðt � 1Þ ¼ 0 and MðtÞ ¼ 0ð Þ

P A1ðtÞ ¼ 1jMðtÞ;A1ðt � 1Þ;W ; LðtÞð Þ ¼

1; if t > 0 and A1ðt � 1Þ ¼ 1

0; if t > 0 and A1ðt � 1Þ ¼ 0 and MðtÞ ¼ 0

expit �5þ 0:1W1 þ 0:1W2 þ 0:2W3 þ 0:2W4 � 1:5LðtÞ þ "2ðtÞð Þ; otherwise

8><
>:

Table 7 Events in data analysis

Time Switch time

0 1 2 3 4 5 6 7 8 9 10

1 0 13
2 1 0 8
3 0 1 0 11
4 0 0 0 0 5
5 1 0 0 0 0 3
6 0 0 0 0 0 0 4
7 0 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 0 1
9 0 0 0 0 0 0 0 0 0 2
10 0 0 0 0 0 0 0 0 0 0 3
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Tables 9 and 10 compare the number of patients in the simulated data and actual data who are uncensored
and following a given regime. In the data analysis, for example, in the first 3-month interval following
immunologic failure (time = 1) there were no patient deaths among the 137 uncensored patients who
switched immediately (switch time = 0) and 13 deaths among the 2,285 uncensored patients who did not

Table 9 Support (# uncensored and following rule) in data analysis

Time Switch time

0 1 2 3 4 5 6 7 8 9 10

1 137 2,285
2 120 88 1,962
3 104 80 71 1,703
4 88 68 67 54 1,453
5 77 59 57 51 61 1,184
6 54 44 50 48 57 57 951
7 40 37 43 48 54 55 51 760
8 29 33 40 46 50 51 51 49 602
9 17 29 34 41 44 48 51 49 50 508
10 10 28 34 39 44 46 51 48 49 53 432

Table 8 Events in simulated data

Time Switch time

0 1 2 3 4 5 6 7 8 9 10

1 0 9
2 0 1 10
3 0 0 1 9
4 0 0 0 1 7
5 0 0 0 0 1 5
6 0 0 0 0 0 0 4
7 0 0 0 0 0 0 0 3
8 0 0 0 0 0 0 0 0 2
9 0 0 0 0 0 0 0 0 0 2
10 0 0 0 0 0 0 0 0 0 0 1

Table 10 Support (# uncensored and following rule) in simulated data

Time Switch time

0 1 2 3 4 5 6 7 8 9 10

1 121 2,229
2 107 118 1,890
3 95 107 131 1,582
4 82 94 120 127 1,237
5 70 83 110 117 112 992
6 61 74 97 108 102 101 798
7 53 65 88 98 96 95 89 645
8 47 58 80 91 90 90 85 82 527
9 40 51 72 83 83 84 82 79 76 433
10 35 47 65 77 77 79 76 75 74 72 358
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switch immediately (switch time = 1). In the second 3-month interval following immunologic failure (time =
2), there was one patient death among the 120 uncensored patients who switched immediately (switch time
= 0), no patient deaths among the 88 uncensored patients who switched during the first 3-month interval
(switch time = 1) and 8 deaths among the 1,962 uncensored patients who did not switch immediately or
during the first 3-month interval (switch time = 2).
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