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Background: South Africa faced repeated episodes of temporary 
power shutdowns, or load shedding, in 2014/2015. The effect of load 
shedding on children’s health is unknown.
Methods: We determined periods of load shedding using Twitter, 
Facebook, and data from the City of Cape Town. We obtained the num-
ber of unscheduled hospital admissions between June 2014 and May 
2015 from Red Cross Children’s Hospital, Cape Town, and weather 
data from the South African Weather Service. We used quasi-Poisson 
regression models to explore the relationship between number of hos-
pital admissions and load shedding, adjusted for season, weather, and 
past admissions. Based on assumptions about the causal process lead-
ing to hospital admissions, we estimated the average treatment effect, 
that is, the difference in expected number of admissions per day had 
there been load shedding each day or on any of the preceding 2 days 
compared with if there had not been any load shedding.
Results: We found a 10% increase (95% confidence interval: 4%, 
15%) in hospital admissions for days where load shedding was expe-
rienced on the same day, or no more than 2 days prior, compared with 
when there was no load shedding in the past 2 days. The increase 
was more pronounced during weekdays (12% [7%, 18%] vs. 1% 
[˗9%, 11%]), and for specific diagnoses (e.g., respiratory system: 
14% [2%, 26%]). The average treatment effect was estimated as 6.50 
(5.12, 7.87) highlighting that about 6 additional admissions a day 
could be attributed to load shedding.
Conclusions: The association we measured is consistent with our 
hypothesis that failures of the power infrastructure increase risk to 
children’s health. See video abstract at, http://links.lww.com/EDE/
B409.

Keywords: Load shedding, Power failure, Pediatrics, Causal infer-
ence, TMLE
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The Republic of South Africa faced repeated episodes of 
temporary power shutdowns in 2014–2015. Owing to its 

inability to satisfy the power demand (because of loss of power 
generation) and to prevent uncontrolled blackouts, the monop-
oly power supplier ESKOM implemented this practice, which 
is also known as rotational load shedding, for several hours a 
day in most of the country. Load shedding is an intervention 
of last resort when power demand exceeds supply: times and 
areas affected by load shedding have been communicated by 
ESKOM to the public on short notice, for example, via sched-
ules published on Twitter and different dedicated homepages.

Even though electricity is the main power source for 
heating, cooking, and lighting throughout South Africa,1 the 
consequences of load shedding are predominately discussed 
with regard to its economic implications, probably because 
of South Africa’s challenging economic situation.2 Unfor-
tunately, surprisingly little information can be found about 
health-related implications and costs. This is worrying, as case 
reports from hospitals suggest a direct link between blackouts 
and health outcomes, such as an increased burden on already 
overworked staff, for example, during surgeries.3

Failures of the electrical infrastructures are known to 
have increased hospital admissions, health-related complica-
tions, and mortality during both the “Northeast blackout” of 
2003 in the United States and Canada and a power blackout in 
Italy, Europe, the same year.4–9 Reasons for increased admis-
sions included carbon-monoxide intoxications because of the 
use of portable generators,7 more emergencies owing to failure 
of electrical medical devices,6 more domestic accidents,5 and 
a higher rate of food poisoning.7 Other studies investigated 
natural disasters and extreme weather conditions, which were 
accompanied by power failures and affected the health of the 
respective population by an increased number of emergency 
presentations, carbon monoxide poisoning, among other rea-
sons.10–13 Although spontaneous power shutdowns as described 
above, and repeated power shutdowns during load shedding in 
South Africa have different causes, the implications, that is, 
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lack of electricity are very much the same. One may there-
fore assume similar underlying etiological mechanisms. 
Nevertheless, to the best of our knowledge, no study has yet 
investigated the health effects of load shedding, which differs 
from unexpected power failures in the sense that people can 
partly adapt their lives around load shedding schedules and 
face shorter durations of no electricity supply. The effect of 
load shedding on health outcomes is of particular interest in 
a developing country like South Africa, where resources are 
scarce, electricity is the main source of heating and cooking, 
and health care facilities are often overburdened.14

This study analyzes the effect of load shedding on 
admissions to the Red Cross War Memorial Children’s Hos-
pital (RCCH), a 300-bed tertiary pediatric hospital in Cape 
Town.

METHODS

Study Design
This is a retrospective, single-centre observational 

study analyzing the relationship between unscheduled hospi-
tal admissions to the RCCH and load shedding in the period 
between 1 June 2014 and 31 May 2015.

Study Population and Number of Admissions
The RCCH catchment area is the city of Cape Town 

except for specialty consultations, for example, burns, from 
the whole Western Cape and beyond.

The number of direct admissions of children up to 13 
years of age, excluding internal transfers, was used as pri-
mary outcome in this analysis. Planned admissions, that is, 
patients with appointments, were excluded from the analysis. 
We thus considered unplanned admissions—for example, 
owing to emergencies, external transfers for specialized care 
(e.g., burns, surgeries, and intensive care), and presentations 
because of proximity or personal experience—as the main 
quantity of interest. We used International Statistical Classifi-
cation of Diseases and Related Health Problems (ICD) codes 
to group patients according to their leading diagnosis, and the 
responsible speciality, that is, medicine or surgery.

Load Shedding as Documented on Twitter and 
Facebook

Our primary exposure variable is binary and indicates 
whether load shedding was implemented on the respective day 
(or preceding days, see below). In secondary analyses, which 
are descriptive and spatial in nature, the exposure relates to the 
event that load shedding was implemented in a specific area.

The authors identified days of load shedding from 
the available Twitter (San Francisco, CA) tweets from the 
ESKOM account @Eskom_SA (accessed on 12/05/2015 and 
14/06/2015) and cross-checked them with Facebook (Menlo 
Park, CA) entries (https://www.facebook.com/EskomSouth-
Africa/), documenting the respective day of an event but 
neglecting the exact time span (usually between 6 am and 10 pm)  

and the outage severity because those details were only incon-
sistently reported and information quality differed by area and 
time. This information was then validated, and also updated 
for 9 days, by using data from the electricity generation and 
distribution department of the City of Cape Town, which also 
provided information on the length and area of load shedding 
(for those areas which were under direct control of the city).

Weather and Other Potential Confounders
Weather data, identified as a possible confounder (see 

below), was obtained from the South African Weather Ser-
vice. Relative humidity (in %), pressure (in hectopascal), 
precipitation (rainfall in mm), temperature (in degrees Cel-
sius), and wind speeds (in meter/second) were obtained for 
the five weather stations in Cape Town: Cape Town airport, 
South African Astronomical Observatory, Royal Yacht Club, 
Molteno Reservoir, and Kirstenbosch. Sunshine (hours per 
day) was only measured at Cape Town airport. We defined 
the arithmetic mean of the measurements of Cape Town Air-
port, the Observatory, and Molteno Reservoir as our weather 
indicators, based on the proximity to the catchment area of 
the RCCH. Kirstenbosch was excluded because it lies on the 
slopes of a mountain and has weather conditions that are not 
representative for the rest of Cape Town (see eFigure 1; http://
links.lww.com/EDE/B390 for smoothed weather data for dif-
ferent stations). The Yacht Club was excluded as well because 
humidity and temperature measurements were missing for 
119 consecutive days and the sea climate may not perfectly 
resemble the weather conditions of the study population.

We further identified seasonal trends as another poten-
tial measured confounder.

Statistical Analysis
We used kernel density plots to look at the distribution 

of hospital admissions depending on whether load shedding 
occurred and if it was a weekday. We used quasi-Poisson 
regression models to explore the relationship between the 
number of hospital admissions and load shedding. We con-
sidered month, weather, last week of the month (pay week), a 
weekly trend modeled with sine and cosine terms, past weather 
indicators up to a lag of 2 days, and past admissions up to a 
lag of 28 days to be potential confounders or relevant to model 
the admission process. The quasi-Poisson model can be inter-
preted as any other Poisson model, but allows the variance of 
the model to be different from the mean, and can therefore deal 
with overdispersion, that is, greater variability in the data than 
expected under the specified model. All continuous variables 
were included nonlinearly in the model using p-splines.15 In  
the main model, load shedding is a binary variable, which 
indicates if there was a load shedding event on the same day 
or up to 2 days prior of the day of interest, as hospital referral 
or admission may not occur immediately after load shedding.

Models used for sensitivity analyses used different defi-
nitions and different model classes (negative binomial model, 
linear model, INGARCH model, see eText1). In secondary 
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analyses, we looked at alternative exposure variables, that is, 
(1) the event of load shedding, on the same day or any of the 
two preceding days, in one of Cape Town’s 16 load shedding 
areas; and (2) the exposure in interaction with length of load 
shedding, modeled nonlinearly with p-splines, and defined 
as the number of minutes of load shedding per day averaged 
over the respective areas. For both secondary exposures data 
on areas that were not under direct control of the city, which 
include both populated and unpopulated (mountainous) areas 
(in total 59% of Cape Town’s official size), were not available 
and were thus not part of the calculations.

We used frequentist model averaging16,17 to estimate the 
importance of the inclusion of different lags, that is, to what 
degree load shedding on the same day versus previous days is 
important to describe hospital admissions in the above Quasi-
Poisson models. Briefly, frequentist model averaging means 
calculating Akaike’s Information Criterion for all possible 
models. Then, a higher weight is given to models that are more 
plausible according to Akaike’s Information Criterion. The sum 
of the weights of those models that include the variable of inter-
est are used as a variable importance (VI) measure (0 ≤ VI ≤ 1).  
We used VI > 0.5 as a rule to include a lag variable.

We also used frequentist model averaging to determine 
the inclusion of past admissions, weather indicators, and com-
plexity of the weekly trend. More details on the final model, 
and more methodological background, are given in eText1.

The directed acyclic graph (DAG) in Figure 1 represents 
our assumptions about the causal process leading to LS and 
hospital admissions.

Because local weather conditions in Cape Town 
may affect hospital admissions, such as viral infections 
and weather-related accidents, and electricity demand and 

therefore the probability of experiencing load shedding, local 
weather may be a confounder.18 National weather conditions 
may affect the implementation of load shedding but is likely 
unrelated to admissions at RCCH. Under the assumptions rep-
resented in the DAG, the causal effect of load shedding on 
hospital admissions can be estimated by adjusting for local 
weather and seasonal patterns using appropriate methodol-
ogy, for instance targeted maximum likelihood estimation 
(TMLE).19,20 We estimated the average treatment effect, that 
is, the difference in expected number of admissions per day 
had there been a load shedding event each day or on any of 
the preceding 2 days, during the whole year, compared with if 
there had not been any load shedding, using TMLE with super 
learning.21 We refer the reader to eText1, and the references 
therein, for a more technical background. Briefly, TMLE first 
standardizes the data with respect to the confounders pre-
sented in Figure 1. In a second targeted step, estimation of 
the average treatment effect as defined above is potentially 
improved by utilizing information from the treatment assign-
ment mechanism, which is the probability of load shedding 
conditional on the potential confounders.

All analyses were conducted in R,22 using packages 
“SuperLearner” and “tmle”23 for the causal inference analy-
sis, package “MuMIn”for model averaging, and packages 
“MASS” and “tscount” to fit the negative binomial and 
INGARCH model, respectively. We obtained ethical approval 
from University of Cape Town’s Human Research Ethics 
Committee for this study (Ref#: 901/2016).

RESULTS
During the study period between June 2014 and May 

2015, Cape Town experienced 72 days of load shedding, 48 

FIGURE 1. DAG for our assumptions about the relationship between load shedding, hospital admissions, and weather. DAG 
indicates directed acyclic graph.
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during the week and 24 on the weekend. Load shedding started 
as soon as 11 June 2014, but many events (38) occurred in 
April/May 2015. Figure 2 shows that there are more hospital 
admissions during days of load shedding, but typically dur-
ing weekdays. The mean number of unscheduled admissions 
during the study period was about 57. On days of load shed-
ding there were on average 61.3 admissions a day, and on days 
without there were about 56.7 admissions.

As speculated in the DAG, weather conditions, such 
as precipitation, were associated with both the probability of 
load shedding, and the rate of hospital admissions, support-
ing our initial assumption that weather may be a confounder 
(eFigure 2; http://links.lww.com/EDE/B390).

The Table shows that load shedding leads to a 10% 
increase (95% confidence interval [CI]: 4%, 15%) in hospital 
admissions, after adjustment for weather indicators, month, 
week of payment, seasonal trends, and past admissions. 
Similar results are obtained under a standard Poisson model 
or a linear regression model, but these models violated cer-
tain assumptions, including overdispersion and normality of 
residuals.

Using a negative binomial regression model led to an 
estimate of 10% (5%, 15%), an INGARCH model to 6% 
(2%, 10%), though not all assumptions were met for the latter 
model (eFigure 6; http://links.lww.com/EDE/B390). Using 
another definition of a LS event (same day, only 1 day prior, 
only 2 days prior, only 3 days prior) led to incidence rate 
ratios (IRRs) which suggest an increase in hospital admis-
sions between 5% and 9% (Table). The VI measure obtained 
from frequentist model averaging suggests that inclusion of 
a 3- or 4-day lag period does not add much (VI ≤ 0.4) infor-
mation. This demonstrates the usefulness of evaluating the 
effect of LS for events that occurred up to 2 days prior of 
admission.

The IRRs, estimated for occurrence of load shedding in 
each of the city’s official 16 load shedding areas, are visual-
ized in Figure 3.

LS events in the southern peninsula of Cape Town and 
in the residential areas of Durbanville produced the lowest rate 
ratios. High IRRs were found for the township of Philippi, the 
satellite town of Atlantis, and areas close to Red Cross hos-
pital (Hanover Park, Lansdown, Observatory, Rondebosch, 
Newlands) and areas of mixed population and income groups 
(Hout Bay, southern suburbs, Parow, Goodwood). These areas 
were sometimes, but not always, located close to areas of 
lower median household income (eFigure 4; http://links.lww.
com/EDE/B390). There are associations of varying strength 
between the implementation of load shedding in different 
areas, as this followed a schedule, highlighting the complex 
spatial dependence structure (eFigure 5; http://links.lww.com/
EDE/B390).

Hospital admission rates did not differ substantially 
when comparing overall surgical with medical specialties, 
but results differed with respect to the different diagnoses 
based on ICD-10 code chapters (Table). The highest IRR was 
observed for diseases of the eye and ear (12% [˗16%, 48%]), 
the digestive system (11% [˗8%, 33%]) and the respiratory 
system (14% [2%, 26%]). No relevant changes in admission 
were observed for intoxications or infections not defined in 
other ICD-10 chapters.

In exploratory analyses, we found that the increase in 
admissions occurred primarily during the week as shown 
by inclusion of an interaction with weekend/weekday in 
the model (12% [7%,18%] vs. 1% [˗9%, 11%]). Moreover, 
we could not find evidence that length of load shedding 
affected the rate of admissions (eFigure 3; http://links.lww.
com/EDE/B390).

FIGURE 2. Kernel density plots for the distribution 
of “number of admissions”; stratified by weekday vs. 
weekend and load shedding vs. no load shedding. 
Figure is available in color online.
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Using TMLE, we estimated the average treatment effect 
as 6.50 (95% CI: 5.12, 7.87), or in other words that about six 
additional admissions a day could be attributed to load shedding.

Average treatment effects and IRRs for individual diag-
noses are listed in eTable 1; http://links.lww.com/EDE/B390. 
Most of these estimates are not precise enough to conclude 
that specific diagnoses would occur more often in days follow-
ing load shedding events.

DISCUSSION
Our analyses demonstrate that load shedding as imple-

mented in South Africa is associated with a substantial increase 
in hospital admissions of children, on the same day and up to 2 
days following the power interruption. Under the assumptions 
that we have identified and included all confounding variables 
in our analysis, that is, that the DAG from Figure 1 is cor-
rect, and that the modeling approach discussed in eText1 is 
appropriate, this effect is causally interpretable. Note that this 
applies to the average treatment effect estimated by TMLE, 
as the IRRs estimated with quasi-Poisson regression require 
stronger assumptions to be causally interpretable, for exam-
ple, a constant treatment effect across all covariate strata.

A strength of our study is our rigorous approach of data 
collection using Twitter, Facebook, and the City of Cape Town 
after local authorities, including ESKOM, did not support 
our request for data sharing. Moreover, contacted radio sta-
tions only kept short-term records of less than 2 weeks. This 
approach of data collection may serve as a future model for 
surveys where data that normatively should be publicly avail-
able are withheld. Moreover, we have clearly communicated 
our assumptions under which our effect estimates are causally 
interpretable and used state-of-the-art methodology to facili-
tate this analysis.

Our study has some limitations. First, we did not have 
access to individual patient folders and higher numbers of 
specific diagnoses to further expand our hypotheses on what 
are the biggest risks of load shedding. Our results on indi-
vidual diagnoses are imprecise. Moreover, while we had been 
able to identify the areas of load shedding events, these areas 
are large and often cover populations of different household 
income groups and ethnicities. Our results may indicate that 
poorer areas could be affected more heavily by load shedding 
than wealthier areas. However, wherever load shedding was 
not directly controlled by the city but ESKOM, data were 
unavailable. This includes townships such as Khayelitsha and 
Nyanga, and small residential areas in Cape Town’s north. 
There is also a complex spatial-temporal relationship with 
respect to the implementation of load shedding in different 
areas. We may not have been able to model this in all detail 
and it may therefore be advisable to interpret our spatial anal-
ysis with care. In addition, there is the possibility of migration 
between different areas, though this may be negligible as the 
study period is very short.

In general, the methods we use (quasi-Poisson regres-
sion, TMLE with super learning) require that observations be 
independent conditional on the covariates; this assumption is 
needed for the validity of the likelihood functions used and 
for the application of super learning. Although we have tried 
to include seasonal trends, past admissions and past weather 
indicators to meet this assumption, we cannot exclude the pos-
sibility that there remains dependence which we have not been 
able to model. In this case, inference may be affected, and 
CIs may not be correct. Apart from missed seasonal trends, 

TABLE. Incidence Rate Ratios (IRR), Obtained from a Quasi-
Poisson Model, That Is, Ratio of Admissions for Days Where 
Load Shedding (LS) was Experienced on the Same Day, or No 
More than 2 Days Prior, Compared with When There Was No 
LS in the Past 2 Days. Main Results Are Highlighted in Bold.

Intervention IRRa 95% CI VIb

Main result 1:    

LS: same day or up to 2 days prior 1.10 1.04;1.15  

Interaction:    

 Weekday 1.12 1.07, 1.18  

 Weekend 1.01 0.91, 1.11  

Interaction: length of load shedding    

 see eFigure3    

Other models:    

 LS: same day 1.05 1.00, 1.11 0.30

 LS: 1 day prior 1.09 1.04, 1.15 0.85

 LS: 2 days prior 1.07 1.01, 1.13 0.69

 LS: 3 days prior 1.07 1.01, 1.13 0.40

 LS: 4 days prior 0.98 0.93, 1.04 0.34

By specialty:    

 Surgical cases 1.08 1.00, 1.16  

 Medical cases 1.11 1.05, 1.18  

By ICD-10 codes (code range):    

 Certain Infections (A00-B99) 1.04 0.92, 1.17  

 Eye & Ear (H00-H95) 1.12 0.84, 1.48  

 Respiratory system (J00-J99) 1.14 1.02, 1.26  

 Digestive system (K00-K93) 1.11 0.92, 1.33  

 Skin (L00-L99) 1.06 0.86, 1.31  

 Injuries, Poisoning (S00-Y98) 0.97 0.83, 1.13  

 Other 1.11 1.03, 1.20  

 ATE 95% CI  

Main result 2: ATE estimated by 
TMLEc

6.50 5.12, 7.87  

Naïve linear regression, adjusted for 

confounders

5.04 2.29, 7.80  

The reported average treatment effect (ATE), estimated with targeted maximum 
likelihood estimation (TMLE), estimates the difference in expected number of 
admissions per day had there been a LS event each day or on any of the preceding 2 days, 
during the whole year, compared with if there had not been any LS.

aAll estimates are adjusted for weather history, month, week of payment, admission 
history, and a seasonal weekly trend, see eText 1 for the exact model specification.

bVariable importance (VI) obtained from frequentist model averaging via quasi-
Akaike Information Criterion weights (between 0 = unimportant and 1 = very important), 
see eText 1 for more details.

cTargeted maximum likelihood estimates have been obtained using super learning, 
see eText1 for the list of learners.

ATE indicates average treatment effect; CI, confidence interval; IRR, incidence rate 
ratio; VI, variable importance.

http://links.lww.com/EDE/B390
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there could be other confounders we have not measured: 
however, these could only be variables that cause an unusu-
ally high energy demand in the country, such as international 
sporting events, although we are unaware of any such events 
in the relevant time period. Last, it is important to note that 
our results may not be generalizable to high-income countries 
or settings where living conditions differ greatly from those in 
South Africa.

The effect of load shedding on health may be best 
explained with case reports from RCCH. For example, there 

was a patient with a skin burn because of handling candles dur-
ing load shedding and the father admitted the patient after the 
skin got infected 2 days later. Another admission was related 
to injuries caused by a pan containing hot fat, which had been 
placed near an outdoor fire since the electric kitchen stove 
could not be used. These two cases happened at night and at 
home, where accidents may happen most often. Since Cape-
tonians have long daily commutes,24 often more than 2 hours 
one-way, it may well be that accidents (related to limited light-
ing and heating options) happen after they return home from 

FIGURE 3. Incidence rate ratios 
for number of hospital admissions 
depending on area of load shedding, 
calculated with an adjusted Quasi-
Poisson regression model, see eText 1 
for details. Those areas which were not 
under the city’s control (but ESKOM’s 
control) are excluded because of data 
unavailability. Figure is available in 
color online.
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work. This could explain why, by our estimates, load shedding 
affected admissions primarily during weekdays, where people 
arrive home late. Besides such obvious relationships, there 
might be less obvious ones that may not be immediately clear 
to treating doctors: for example, inhalation of fumes from an 
improvised stove, or the ingestion of food from an interrupted 
cold chain. Increased admissions owing to eye and ear, lung, 
and digestive system suggest external noxious influences, for 
example, owing to combustion, as a possible trigger.

We did not find ICD-10 codes of the mixed chapter 
“injuries, poisoning, and other external causes” to be con-
tributing to the increased number of admissions as described 
for other blackouts. Since we deal with children only, it may 
well be that access to toxins such as gasoline is limited. Fur-
thermore, the diverse diagnoses covered in this chapter might 
make an observable effect less likely.

Moreover, infections are partly covered by the respec-
tive organ specific ICD-10 chapter, for example, for the respi-
ratory system. This explains the missing relationship of the 
ICD-10 chapter “Certain infectious and parasitic diseases” 
with load shedding and more generally highlights the chal-
lenges of the interpretation of grouped disease categories. In-
depth analyses implied trends of higher incidences of burns, 
traumatic fractures, meningitis, and other individual diagno-
ses, but the number of cases per diagnosis were too small for 
reliable interpretation. Bigger studies are needed to enhance 
our understanding of (indirect) causal relationships and, most 
importantly, to prevent casualties in situations when power 
failures occur.

An increased number of hospital admissions during 
load shedding leads to an increased burden of already over-
whelmed health care facilities. Additional resources are not 
necessarily available, and it remains unclear what the conse-
quences of the additional costs are. This consideration is rel-
evant in the current and very lively debate on South Africa’s 
future energy mix. While costs of generating energy, politi-
cal considerations, and CO2 emissions are certainly relevant 
aspects of this discussion, security of an uninterrupted power 
supply should remain a priority not only from an economic 
perspective, but also from a public health point of view. As 
we have shown, the above measured association is consistent 
with our hypothesis that failures of the power infrastructure 
increase risk to children’s health.
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eFigure 1. Smoothed weather data for different weather stations in the Cape Town area: relative humidity (in %), pressure (in hectopascal), rainfall (in mm),

temperature (in degrees Celsius), and wind speeds (in meter/second).
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eFigure 2. Probability of load shedding (bottom 6 panels), and incidence rate ratios for number of hospital admissions

(top 6 panels), depending on weather indicators calculated with an additive (covariate adjusted) logistic regression model.

The reported weather indicators are sunshine (in hours), wind speed (in meter/second), rainfall (in mm), temperature (in

degrees Celsius), and relative humidity (in %). Each panel shows the respective estimated penalized spline, conditional on

other weather indicators and month.
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eFigure 3. Non-linear interaction between load shedding (same day or up to 2 days prior) and length of load shedding (average time, measured in minutes, per area

and per day), modelled via penalized splines in an additive Quasi-Poisson model.
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eFigure 4. Median yearly household income, as estimated in the national census from 2011, stratified by area. The dot map was produced by the tool of Adrian

Firth, available at https://dotmap.adrianfrith.com/.

https://dotmap.adrianfrith.com/


eFigure 5. Association between load shedding events in different areas measured by Cramer’s V . The closer Cramer’s V is to 1, i.e. the more red and the bigger

the circle, and the stronger the association between two areas in terms of load shedding events taking place on the same day.
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eTable 1. Average Treatment Effect (ATE) and incidence rate ratios (IRR) for diagnoses where the number of reported cases exceeds 25.

ICD-10 Diagnosis IRR 95% CI ATE 95% CI

J05 Acute obstructive laryngitis 1.74 0.53 5.73 0.05 0.01 0.10

T22 Burn & corrosion of shoulder & upper limb 1.47 0.45 4.85 0.29 0.21 0.37

T24 Burn & corrosion of lower limb 1.45 0.57 3.73 0.06 0.01 0.11

T23 Burn & corrosion of wrist and hand 1.37 0.49 3.83 0.01 -0.04 0.06

A41 Sepsis 1.34 0.62 2.91 0.00 -0.06 0.06

J44 Chronic obstructive pulmonary disease 1.29 0.58 2.88 -0.08 -0.16 -0.00

Q21 Congenital malformations of cardiac septa 1.27 0.37 4.34 0.61 0.49 0.73

J18 Pneumonia 1.24 0.74 2.07 0.00 -0.12 0.13

S09 Unspecified injuries of head 1.08 0.75 1.57 0.05 -0.08 0.18

G40 Epilepsy 1.08 0.54 2.16 -0.13 -0.23 -0.03

Z00 General examination 1.07 0.36 3.16 0.18 0.10 0.27

J21 Acute bronchiolitis 1.01 0.56 1.80 -0.24 -0.40 -0.07

T20 Burn & corrosion of head, face, and neck 0.95 0.42 2.14 -0.10 -0.17 -0.03

J45 Asthma 0.90 0.40 2.03 -0.07 -0.14 -0.01

T29 Burns of multiple regions 0.87 0.41 1.86 -0.13 -0.20 -0.06

A87 Viral meningitis 0.87 0.25 3.04 0.23 0.13 0.33

T74 Child abuse, neglect & other maltreatment 0.81 0.33 2.02 0.02 -0.02 0.07

A09 Infectious gastroenteritis 0.79 0.52 1.19 -0.12 -0.36 0.12

S42 Fracture of shoulder and upper arm 0.79 0.34 1.82 -0.04 -0.10 0.01

T21 Burn & corrosion of trunk 0.69 0.31 1.55 0.00 -0.07 0.08

S72 Fracture of femur 0.62 0.30 1.30 -0.09 -0.16 -0.02

S52 Fracture of forearm 0.61 0.30 1.23 -0.12 -0.19 -0.05

S06 Intracranial injury 0.59 0.16 2.17 -0.07 -0.11 -0.03

S82 Fracture of lower leg 0.59 0.25 1.40 -0.10 -0.15 -0.04

G03 Meningitis 0.56 0.13 2.50 -0.05 -0.10 -0.01

L02 Cutaneous abscess 0.52 0.24 1.15 -0.10 -0.18 -0.02

J22 Acute lower respiratory infection 0.37 0.14 0.99 -0.11 -0.17 -0.04



eText 1. Technical details about the statistical approaches used in the paper.

Content:

1) Notation and Variables

2) Frequentist Model Averaging

3) Quasi-Poisson Model: Model Specification

4) Targeted Maximum Likelihood Estimation

5) Other Models

Notation and Variables. We are interested in the number of admissions at Red Cross hospital Yi, measured on days

i = 1 . . . , 365. Then, E(Y ) refers to the expected number of admissions per day. The (main) interventions of interest are the

binary variable A indicating whether load shedding has been implemented on day i or not, and Ā2 which denotes whether

load shedding occurred on the same or any of the two preceding days. The matrix of potential confounders L includes hours

of sunshine (L1), wind speed (L2), humidity (L3), pressure (L4), precipitation (L5), temperature (L6), month (L7), last week

of the month (week of payment, L8), and a seasonal (weekly) trend modeled via sine and cosine terms, i.e.

cos(ωkt) and sin(ωkt) with ωk =
2kπ

T

with T = 7 days. More specifically we consider cos(ω1t) = L9, sin(ω1t) = L10, cos(ω2t) = L11, sin(ω2t) = L12, cos(ω3t) = L13,

sin(ω3t) = L14, cos(ω4t) = L15, sin(ω4t) = L16 to be potential confounders. Moreover, in most of the below described

models, we also consider past values of the weather indicators up to a lag of 2 days as well as past admissions (i.e. Yi−lag,

lag ∈ {1, 2, . . . , 13, 14, 21, 28}) to be of interest.

Frequentist Model Averaging. Since the potential set of adjustment variables is large, mostly due to the number of

lagged and seasonal variables, we need to reduce the number of variables, so that the implementation of the below specified

models is computationally feasible at all (i.e. for successful fitting of the splines and the causal inference procedures). A

classic approach would be model selection with hypothesis testing, or using a criterion such as Akaike’s Information Criterion

(AIC). However, data-driven model selection has the disadvantage that model selection uncertainty is not being taken into

account, i.e. different samples of data may yield different conclusions with respect to variable inclusion (Chatfield, 1995). An

alternative to model selection is model averaging.

With model averaging, one calculates a weighted average ˆ̄β =
∑
κ wκβ̂κ from the k estimators β̂κ (κ = 1, . . . , k) of the

set of candidate (regression) models M where the weights are calculated in a way such that ‘better’ models receive a higher

weight. A popular weight choice would be based on the exponential AIC,

wAIC
κ =

exp(− 1
2AICκ)∑k

κ=1 exp(− 1
2AICκ)

,

where AICκ is the AIC value related to model Mκ ∈M (Buckland et al., 1997). Note that the weights sum up to one. The

k point and k variance estimates can then be combined into a single model, based on the weights. In our analysis we are

not interested in this combined estimate but rather into a variable importance measure obtained from the model averaging

weights. With this, the sum of the weights of those models which include the variable of interest are simply being added

up. So, if there is a single best model (which has by far the lowest AIC), then this model receives weight 1 and all variables

contained in it receive a variable importance measure of 1 (and the others 0). However, if there are say 10 very good models

(measured by AIC), and only 4 of those contain the respective variable, then the sum of the weights of those 4 models would

determine the variable’s importance. We use a 50% support, i.e. a variable importance of 0.5 or higher, as a rule to include

a variable into our final model. More details are given below. Readers who are interested into model averaging may consult

the following references: Burnham and Anderson (2002), Hjort and Claeskens (2003), Hoeting et al. (1999).



Quasi-Poisson Model: Model Specification. Our considerations start with a Poisson model which considers all

potential variables of interest:

E(Y ) = exp(β0 + β1A+ Lβ2) (1)

where L includes L1, . . . , L16, L1
i−1, . . . , L

6
i−1, L1

i−2, . . . , L
6
i−2, and Yi−l, l ∈ {1, 2, . . . , 13, 14, 21, 28}. Note that a standard

Poisson model assumes E(Y ) = V ar(Y ) = µ which may not be met (and in fact is not met in our data1). For this reason

we use below only Quasi-Poisson models which allow V ar(Y ) = φE(Y ), where φ is a parameter which is constant across all

i = 1, . . . , n. The parameter φ can be estimated from the data using the χ2-statistic, and can also be used to correct the

standard maximum likelihood estimate V̂ar(β̂i,ML), i.e. one can use φ̂× V̂ar(β̂i,ML) to construct confidence intervals for β̂i.

With this approach we still use the model equation (1), but with more flexible variance estimation (McCullagh and Nelder,

1989).

To reduce the number of variables we consider different models in which a number of variables are being held fixed and

others vary (i.e. a group of related variables, say lagged variables) so that model averaging and the above introduced variable

importance measure can be calculated2.

i) To determine the lags needed for Yi−lag we implement model averaging based on the following full Quasi-Poisson model:

E(Y ) = exp(β0 + β1Ā
2 + β2Yi−1 + β3Yi−2 + β4Yi−3 + β5Yi−4 + β6Yi−5 + β7Yi−6 + β8Yi−7 + β9Yi−8 + β10Yi−9

+β11Yi−10 + β12Yi−11 + β13Yi−12 + β14Yi−13 + β15Yi−14 + β16Yi−21 + β17Yi−28 + β18L
9 + β19L

10 + β20L
11

+β21L
12 + β22L7 + β23L

8 + β24L
1 + β24L

2 + β24L
5 + β25L

3
i−1 + β26L

5
i−1 + β27L

6
i−1 + β28L

2
i−2)

This analysis yields variable importance measures > 0.5 for the following lags of Y : 1, 3, 7, 9.

ii) To determine the amplitude of the seasonal component, i.e. the k needed for cos(ωkt) and sin(ωkt), we implement model

averaging based on the following full Quasi-Poisson model:

E(Y ) = exp(β0 + β1Ā
2 + β2Yi−1 + β3Yi−3 + β4Yi−7 + β5Yi−9

+β6L7 + β7L
8 + β8L

1 + β9L
2 + β10L

5 + β11L
3
i−1 + β12L

5
i−1 + β12L

6
i−1 + β14L

2
i−2

β15L
9 + β16L

10 + β17L
11 + β18L

12 + β19L
13 + β20L

14 + β21L
15 + β22L

16)

Cosine and sine terms (i.e. L9 − L16) that are supported by a variable importance of > 0.5 are k = 1 and k = 2.

iii) To determine the importance of the potential confounder weather we implement model averaging for the following two

Quasi-Poisson and logistic regression models:

E(Y ) = exp(β0 + β1Ā
2 + β2Yi−1 + β3Yi−3 + β4Yi−7 + β5Yi−9 + β6L7 + β7L

8 + β8L
9 + β9L

10 + β10L
11 + β11L

12

β12L
1 + β13L

2 + β14L
3 + β15L

4 + β16L
5 + β17L

6 + β18L
1
i−1 + β19L

2
i−1 + β20L

3
i−1 + β21L

4
i−1 + β22L

5
i−1

+β23L
6
i−1 + β24L

1
i−2 + β25L

2
i−2 + β26L

5
i−2 + β27L

6
i−2)

P (A = 1) = β0 + β1Ai−1 + β2Ai−2 + β3L7 + β4L
8 + β5L

1 + β6L
2 + β7L

3 + β8L
4 + β9L

5 + β10L
6 + β11L

1
i−1

+β12L
2
i−1 + β13L

3
i−1 + β14L

4
i−1 + β15L

5
i−1 + β16L

6
i−1 + β17L

1
i−2 + β18L

2
i−2 + β19L

3
i−2 + β20L

4
i−2

+β21L
5
i−2 + β22L

6
i−2

Variables with an importance > 0.5 in either of the two models are L1, L2, L5, L3
i−1, L

5
i−1, L

6
i−1, L

2
i−2.

The above considerations yield to the following final (additive) Quasi-Poisson model which has been used to obtain the

main results in Table 1:

E(Y ) = exp(β0 + β1Ā
2 + L∗β2 + f1(Yi−1) + f2(Yi−3) + f3(Yi−7) + f4(Yi−9) + f5(L1) + f6(L2) + f7(L5)

+f8(L3
i−1) + f9(L5

i−1) + f10(L6
i−1) + f11(L2

i−2)) (2)

In the above equation, L∗ = (L7, L8, L9, L10, L11, L12). With f(·) we refer to unspecified smooth functions which we fit with

penalized splines, as implemented in the R-package mgcv (Wood, 2017). The estimate exp(β̂1) is the one reported in Table 1.
1We have overdispersion, i.e. the ratio of the deviance to the degrees of freedom is about 1.4. The estimated dispersion parameter for quasi

poisson family is 1.39935.
2with R-package MuMIn (Barton, 2017)



Targeted Maximum Likelihood Estimation (in our analysis). From a causal perspective we are interested in the

counterfactual outcome Y A=a
i which refers to the hypothetical outcome that would have been observed if at day i there had

been, possibly contrary to the fact, the intervention A = a, i.e. load shedding or not. More generally we would like to know

the expected number of admissions per day for a particular intervention, E(Y a). Since A is binary, a sensible target quantity

is

ψ = E(Y 1)− E(Y 0),

that is the average treatment effect meaning that we are interested in the difference in expected number of admissions per

day had load shedding being implemented during the whole year compared to if this had not been the case. If we look at Ā2

rather than A we can interpret ψ as the difference in expected number of admissions per day had there been a load shedding

event each day or on any of the preceding two days, during the whole year, compared to if this had not been the case. This

causal parameter can be identified under the following assumptions:

1. Consistency: if A is binary, then Yi = AiY
1
i + (1−Ai)Y 0

i .

2. Positivity: P (A = a|L = l) > 0 for ∀l with P (L = l) 6= 0.

3. Conditional exchangeability: Y a
∐
A|L for ∀A = a, L = l.

Consistency can be interpreted as having a well-defined intervention, that can’t be interpreted/implemented in multiple

ways. This assumption could be met in our data as implementation of load shedding as a temporary power-shutdown is

well-defined in the sense that the consequence of load shedding is the unavailability of electricity. Positivity requires a positive

probability of treatment assignment in all confounder strata, i.e. a positive probability of load shedding occurrence no matter

what season and weather. There are no practical or theoretical considerations which would point towards violation of this

assumption, however there may be practical positivity violations in the sample data because of the small sample size. An

indication of possible positivity violations would be very small (<< 0.01) estimated probabilities of treatment assignment

used in the TMLE procedure (see below). In our data probabilities varied between 0.01781 and 0.89374 showing no signs

of severe practical positivity violations. Conditional exchangeability would be violated if there are unmeasured confounders.

Our DAG (Figure 1, main manuscript) explains why we believe we have measured the main confounders, though we can’t

exclude the possibility of unmeasured confounders. Moreover, we consider the seasonal trend to be modeled correctly; if this

is not the case both conditional exchangeability and the (conditional) independence assumption needed for the modeling (i.e.

the validity of the likelihood functions used and application of super learning, see below) could be violated and this may

introduce bias.

The theory and application of TMLE has been described elsewhere3. Briefly, TMLE requires the fitting of both the

conditional expectation of the outcome E(Y |A,L) and the treatment mechanism P (A = 1|L). Modeling the conditional

outcome enables standardization with respect to the confounders, i.e. integrating L out, which equates to the (parametric)

g-formula:

E(Y a) =

∫
l

E(Y |A = a, L = l) dFl(l)

where FL(·) is the cumulative distribution function with respect to L. Thus, the average treatment effect ψ can be obtained

by using the g-formula to calculate E(Y 1) and E(Y 0). Practically this equates to fitting an appropriate regression model and

predicting the outcome for the whole sample for both A = 1 and A = 04. TMLE adds an additional targeted step whereby the

initial estimate is updated by a regression model which contains i) a fixed intercept/offset, which is the initial estimate of the

ATE (from the g-formula) and ii) a clever covariate which is a function of the inverse probabilities of treatment assignment

(based on P (A = 1|L)). This update reduces bias (if present) and improves efficiency (if no bias present). TMLE can readily

incorporate machine learning to estimate E(Y |A,L) and P (A = 1|L) while retaining valid inference. We have implemented

TMLE with super learning, a combination of machine learning and statistical forecasting.

Super learning means considering a set of prediction algorithms, for example regression models, shrinkage estimators

or boosting. Instead of choosing the algorithm with the smallest cross validation error, super learning chooses a weighted

3Good introductions for epidemiologists can be found in Luque Fernandez et al. (2018) and Schuler and Rose (2017)
4The empirical distribution, i.e. the data, is taken for L = l



combination of different algorithms, that is the weighted combination which minimizes the cross validation error. It can be

shown that this weighted combination will perform (asymptotically) at least as good as the best algorithm, if not better

(Van der Laan et al., 2008) and this is known as the oracle property of super learning. Briefly, super learning works as

follows:

1. First split the data into blocks of equal size (i.e. ten blocks of 100 observations for a sample size of 1,000 units and

the choice of 10-fold cross-validation) and fit each of the selected algorithms on the training set (i.e. on 9 out of the 10

blocks).

2. Then, predict the estimated probabilities of the outcome (Y ) using the validation set (i.e. the remaining one block) for

each algorithm.

3. Repeat steps 1 and 2 for each of the ten blocks. This yields predictions for all 1,000 observations for each learning

algorithm.

4. Now, estimate the cross validated risk for each learning algorithm, that is a function of the true values of Y and the

respective predictions, for example the (vector of the) squared differences.

5. Then, use non-negative least squares estimation to find the weighted linear combination of cross validated risks (related

to each learner) which predicts Y best. Note that the weights sum up to one.

6. Then, use the weights to create a weighted prediction from the different learning algorithms. This yields the super

learner estimate of E(Y |A,L) and P (A = 1|L) respectively.

In our analysis we have implemented TMLE with the following specifications [for the main result in Table 1]:

• Our outcome Y is the number of hospital admissions, A = Ā2 denotes whether load shedding occurred on the same or

any of the two preceding days, and the considered confounders are (based on the model building considerations above,

i.e. variable reduction with model averaging for computational feasibility) L1, L2, L5, L3
i−1, L

5
i−1, L

6
i−1 , L

2
i−2, L

7, L8,

L9, L10, L11, L12, Yi−1, Yi−3, Yi−7, Yi−9.

• Our target quantity is ψ, as discussed above.

• We use the R-package tmle to implement super learning (Gruber and van der Laan, 2012).

• We use super learning to estimate E(Y |A,L) and P (A = 1|L) with 10-fold cross validation, a squared loss function

(for cross validation), and a truncation level of 0.01, meaning that estimated probabilities P (A = 1|L) (needed for the

targeted update step) would have been truncated if they were lower than 0.01 (though this did not occur). We use the

following learners to estimate E(Y |A,L): a full linear regression model, a linear regression model with stepwise AIC

based model selection, a linear regression model with AIC based forward selection, GLM’s based on an EM-algorithm-

Bayesian model fitting (Gelman and Su, 2016), the arithmetic mean, a linear regression model with stepwise AIC based

model selection including interaction terms, LASSO estimation (Tibsharani, 1996), LASSO averaging (Schomaker,

2012) for the full model and models with interactions and squared terms (Schomaker, 2017), boosting (Ridgeway, 2017),

multivariate adaptive regression splines (Milborrow, 2017), Mallow’s model averaging (Hansen, 2007), Jackknife Model

Averaging (Hansen and Racine, 2012), linear regression after screening variables with LASSO, multivariate adaptive

regression splines after screening variables with LASSO, and boosting after screening with Cramer’s V (Heumann

et al., 2016, Chapter 4). The same learners have been used to estimate P (A = 1|L) except Mallow’s Model Averaging,

Jackknifel Model Averaging, and the LASSO. In addition k-nearest neighbour classification has been used.

The Negative Binomial Model. Recall the Quasi-Poisson model used to obtain the results reported in Table 1:

E(Y ) = exp(β0 + β1Ā
2 + L∗β2 + f1(Yi−1) + f2(Yi−3) + f3(Yi−7) + f4(Yi−9) + f5(L1) + f6(L2) + f7(L5)

+f8(L3
i−1) + f9(L5

i−1) + f10(L6
i−1) + f11(L2

i−2))

An alternative to using the above model, would still be using the above model, but instead of using the assumption that

the observations Yi follow a Poisson distribution (conditional on the covariates), one can assume that they follow a negative



binomial distribution:

P (Y = y) =
Γ(φ+ y)

Γ(y + 1)Γ(φ)

(
φ

φ+ λ

)φ(
λ

φ+ λ

)y
Note that Γ(n) is the Gamma function, defined as Γ(n) = (n − 1)! for positive integers and Γ(x) =

∫∞
0
tx−1 exp(−t)dt

otherwise. For φ→∞ this distribution approaches a Poisson distribution. While for a Poisson distribution we get a variance

of λ, it is λ+ λ2/φ for the negative binomial approach, thus allowing to adjust for overdispersion. Our results are based on

the negative binomial model as explained above, implemented with the glm.nb from the library MASS. No splines have been

used to include the covariates.

The INGARCH model. The integer-valued GARCH model, also known as the autoregressive Poisson model, is similar

to the models used above – with the difference that the mean conditional on the past (E(Yi|Fi)) is modeled, i.e. we explicitly

acknowledge the time-series structure by modeling a stochastic process conditional on the past. With Fi we mean the

history of the joint process {Yi, Ai,Li}. In our analysis, we use the following INGARCH model for which we assume a

negative-binomial distribution of Yi:

E(Y ) = exp(β0 + α1λi−1 + α2λi−2 + α3λi−3 + β1Ā
2 + L̃β2)

where L̃ contains all variables from equation (2) and λi = E(Yi|Fi). The decision to include the conditional means up to

a lag of 3 has been based on model selection with AIC. Thus, the INGARCH model is identical to our negative-binomial

model above, with the exception of the inclusion of three conditional means. Background on inference of these models,

as well as good references, can be found in Liboschik et al. (2017). This reference also explains useful diagnostic for the

INGARCH model, all of which are shown in eFigure 6. The autocorrelation function of the residuals does not exhibit any

serial correlation that hasn’t been taken into account by the model (as the autocorrelation is small and below the blue limits).

There is also no sign that the residuals are inappropriate. However, the probability integral transform (PIT) histogram is not

ideal, it should be more uniformly distributed. Moreover, the marginal calibration plot, which plots the difference between

the average predictive cumulative distribution function (cdf) and the empirical cdf, shows major deviations from zero. This

means that the number of hospital admissions, given the past, is not modelled well by the INGARCH model. It is also worth

mentioning that with the INGARCH approach we haven’t been able to include non-linear relationships with splines.



eFigure 6. Diagnostics for the fitted INGARCH model.
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