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Background: Both cD4 count and viral load in HiV-infected per-
sons are measured with error. there is no clear guidance on how to 
deal with this measurement error in the presence of missing data.
Methods: We used multiple overimputation, a method recently devel-
oped in the political sciences, to account for both measurement error 
and missing data in cD4 count and viral load measurements from 
four South african cohorts of a Southern african HiV cohort collab-
oration. Our knowledge about the measurement error of ln cD4 and 
log10 viral load is part of an imputation model that imputes both miss-
ing and mismeasured data. in an illustrative example, we estimate 
the association of cD4 count and viral load with the hazard of death 
among patients on highly active antiretroviral therapy by means of a 
cox model. Simulation studies evaluate the extent to which multiple 
overimputation is able to reduce bias in survival analyses.
Results: Multiple overimputation emphasizes more strongly the 
influence of having high baseline cD4 counts compared to both a 
complete case analysis and multiple imputation (hazard ratio for 
>200 cells/mm3 vs. <25 cells/mm3: 0.21 [95% confidence inter-
val: 0.18, 0.24] vs. 0.38 [0.29, 0.48], and 0.29 [0.25, 0.34], respec-
tively). Similar results are obtained when varying assumptions about 

measurement error, when using p-splines, and when evaluating time-
updated cD4 count in a longitudinal analysis. the estimates of the 
association with viral load are slightly more attenuated when using 
multiple imputation instead of multiple overimputation. Our simula-
tion studies suggest that multiple overimputation is able to reduce 
bias and mean squared error in survival analyses.
Conclusions: Multiple overimputation, which can be used with 
existing software, offers a convenient approach to account for both 
missing and mismeasured data in HiV research.

(Epidemiology 2015;26: 628–636)

It is well known that both cD4 count and viral load in HiV-
infected persons are measured with error, due to physiologic 

and biologic variation and to assay performance.1,2 Biologic 
variation includes intrapersonal fluctuations of cD4 cell count 
over the course of a circadian cycle and from day to day as a 
result of psychological stresses, intercurrent illnesses, alco-
hol, caffeine, exercise, and other factors.1,3,4 assay variation in 
cD4 measurements refers to flow cytometry itself and varia-
tion attributed to the assays used, their accuracy, specimen 
preparation techniques, the age of the sample at the time of 
preparation, and sample conditions during transport to a labo-
ratory.2,3 Measured cD4 count may therefore not represent the 
true underlying cD4 count. the same applies to the accuracy 
of HiV rna (viral load) measurements: biological variation, 
related to disease progression, illnesses and lifestyle factors 
as well as technical variation due to different assays, labora-
tory standards, technician’s skills, and storage temperatures 
can cause a considerable amount of measurement error.3,5–8

Failure to appreciate the extent of measurement error 
may lead to biased results, for example regression estimates 
can either be attenuated or strengthened.9 this makes adjust-
ment for measurement error a topic of considerable inter-
est in the statistical analysis of HiV data.10 Suggestions for 
cD4 count measurement error correction include regression 
calibration,11–13 and approaches which correct the likelihood 
function.14–18 However, these methods have been rarely used 
in practice because of either their complicated implementa-
tion or their construction for a particular regression model or 
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study question.19–21 Furthermore, these approaches require 
complete data, which limits application in low-income high-
burden programmatic care settings where missing data—often 
related to missed laboratory visits, lost records, or incom-
plete data capture—is common.22,23 We are aware of only one 
approach which accounts for missing data in the presence of 
measurement error,15 using a particular nonignorable missing-
ness assumption for the outcome of a nonlinear mixed effect 
model. However, this specific setting would typically not be 
relevant to most HiV research as its motivation and assump-
tions relate only to long-term viral dynamics modeling.

to address the problem of missing data in HiV research 
several approaches can be considered. a general and relatively 
straightforward approach to deal with missing data is multiple 
imputation, which is implemented in many statistical software 
packages.24 Based on the user’s assumptions about the data 
distribution (imputation model) missing values can be filled 
in (imputed) by means of draws from the posterior predictive 
distribution of the unobserved data given the observed data. 
this procedure is repeated to create M imputed datasets, the 
analysis is then conducted on each of these datasets and the M 
results are combined by a set of simple rules. Multiple impu-
tation yields valid inference under the missing-at-random 
assumption which states that the probability of any value to be 
missing from the dataset depends only on the observed data.25

We show how multiple overimputation,19 recently pro-
posed in the political sciences and closely related to multiple 
imputation, can be used to account for both missing at random 
data and measurement error in HiV research under a general 
framework. Multiple overimputation treats mismeasured data 
as an extreme case of missing data: values measured with 
error are replaced with values obtained from an imputation 
model that incorporates the mismeasured values, as well as 
knowledge and assumptions about the measurement error pro-
cess, in prior distributions on individual measurements. after 
generating multiple overimputed datasets, standard multiple 
imputation combining rules can be applied to obtain valid 
inference under assumptions which are similar to missing at 
random. the method has the main advantages of (1) being 
easy to implement with existing software, (2) being applicable 
to a wide range of analysis models and settings, including lon-
gitudinal data analyses, and (3) addressing measurement error 
and missing data simultaneously.

While the method has been tested in the political sci-
ences and first simulations showed promising results in the 
context of linear and logistic regression models, little is known 
about the assumptions, behavior, and success of the method in 
the context of HiV analyses, particularly survival analyses.

We therefore aim to (1) identify an appropriate mea-
surement error model for cD4 count and viral load, (2) to 
investigate the implications, assumptions, and challenges 
related to the implementation of multiple overimputation in 
HiV research, using South african HiV treatment cohort data 
from patients starting on highly active antiretroviral treatment 

(Haart), and (3) to quantify the association of both baseline 
and follow-up cD4 count and viral load with all-cause mor-
tality and to explore the possible bias resulting from ignoring 
measurement error and missing data in this illustrative exam-
ple. in addition, (4) simulations are used to evaluate the extent 
to which multiple overimputation is able to reduce bias arising 
from measurement error and missing data in a wide range of 
survival analysis settings.

METHODS

Framework of Multiple Overimputation in 
General and for HIV Research

Multiple Overimputation
Multiple Overimputation builds on multiple imputa-

tion by interpreting mismeasured values as missing data but 
including the mismeasured values as prior information in the 
imputation model. the procedure is as follows:

 (1)  Multiply impute (say M = 5 times) missing values and 
multiply overimpute (replace, overwrite) mismeasured 
values based on an appropriate imputation model which 
uses assumptions about the mismeasured data as prior 
information.

 (2)  conduct any statistical inference (cox model, Kaplan–
Meier estimator,…) on each overimputed set of data.

 (3)  combine the M estimates related to the M overimputed 
sets of data according to standard multiple imputation 
combining rules (“rubin’s rules”).26

For example, if we had 1,000 patients and 800 of 
them had available baseline cD4 counts, we would impute 
the remaining 200; the 800 measured cD4 counts would be 
treated as mismeasured, as we know that they do not exactly 
represent the true cD4 count of a patient, but rather randomly 
differ from the true value. We would thus overwrite these val-
ues from an imputation model which uses our assumptions 
about the measurement error process as prior information. 
Subsequently, we would perform our analysis on each overim-
puted dataset and combine the results accordingly.

Multiple Imputation with Amelia II
it is known from multiple imputation theory that proper 

multiple imputations (yielding valid inference under the miss-
ing-at-random assumption) are realized via draws from the 
posterior predictive distribution of the unobserved data given 
the observed data.25 these draws can, for example, be gener-
ated by specifying a multivariate distribution of the data and 
simulating the predictive posteriori distribution with a suitable 
algorithm. For our analysis, we consider the expectation Max-
imization Bootstrap (eMB) algorithm27 from the R-package 
amelia ii,28 which assumes a multivariate normal distribution 
for the data, D N∼ µ ,Σ( )  (possibly after suitable transfor-
mations beforehand). in this algorithm, B bootstrap samples 
of the data (including missing values) are drawn and in each 
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bootstrap sample the eM algorithm29 is applied to obtain esti-
mates of μ and Σ which can then be used to generate proper 
imputations by means of the sweep-operator.27,30 Of note, the 
algorithm can handle highly skewed variables by imposing 
transformations on variables (log, square root,…) and recodes 
categorical variables into dummies based on the knowledge 
that for binary variables the multivariate normal assumption 
can yield good results.31

Multiple Overimputation with Amelia II
We assume (1) a classical measurement 

error model, meaning that for any observation: 

observed truex x u u Nij ij ij ij uij

* = + ( ), ,∼ 0 2σ  with σ uij

2  known or 

estimated and (2) that the data are mismeasured at random, 
meaning that the presence of a mismeasured and/or missing 
value may depend only on observed quantities (and not the 
unobserved value itself), see etext 1 (http://links.lww.com/
eDe/a933) for a formal definition.

consider the unobserved data to consist of both the 
missing data and the true latent values xij . Blackwell et al.19 
extend the predictive posterior distribution of the unobserved 
data given the observed data so that both missing and latent 
values are treated as unobserved. Using this extended predic-
tive posterior distribution, applying the eMB algorithm onto 
this distribution to obtain imputations, and incorporating the 

classical measurement error assumptions, x N xij ij
* ∼ ,σUij

2( ) , 

into the e-step of the algorithm, allows the use of a multiple 
imputation framework.19 Most crucially, the authors show that 
this modified eMB algorithm leads to identical solutions when 
compared with using this algorithm implemented in amelia 
ii when prior distributions on mismeasured values that relate 

to x N xij ij∼ * ,σU
2

ij
( )  are used. the reason why multiple over-

imputation is different from multiple imputation and has the 

potential to correct for measurement error is because the draws 
are based on a modified predictive posterior distribution which 
incorporates the classical measurement error assumptions; see 
etext 1 (http://links.lww.com/eDe/a933) and the appendices 
of Blackwell et al. and Honaker et al. for more details.19,27

thus, in summary, using existing software for multiple 
imputation (amelia ii) and specifying observation level pri-
ors for each mismeasured value (normal distribution with 
the mean relating to the mismeasured value and the variance 
known or estimated), accounts for both missing and mismea-
sured data under the above-mentioned assumptions.

after creating M overimputed datasets, the analysis model 
(e.g., the cox proportional hazards regression model) can be fitted 
in each overimputed dataset. the M estimates can then be com-
bined easily either with existing commands contained in most 
statistical software packages or by hand: the point estimate is just 
the average of the M point estimates, whereas the variance reflects 
both the uncertainty in each overimputed dataset and between 
imputed datasets (etext 1; http://links.lww.com/eDe/a933).

A Measurement Error Model for CD4 Count and 
Viral Load

Multiple overimputation can be applied to correct for 
measurement error in both baseline and follow-up HiV rna 
and cD4 count with the following assumptions:

 (1)  a classical measurement error model for both natural 
logarithm cD4 count (cells/mm3) as well as log10 viral 
load (copies/μl):

ln ln , | , .*CD CD ln CD4 4 4
20 0 26

i i i
u u Ni i= + ( )∼

Log VL log VL log VL10 10 10
20 0 255i i i i iu u N* , | , .= + ( )∼

 (2)  the data are mismeasured at random.
the first assumption is a classical measurement error 

model. this assumption has been used before in methodological 
work12,14,17 and implies increased measurement error for higher 
absolute (nonlog) cD4 count and (nonlog) viral load measure-
ments which is in line with clinical knowledge.2,3,6,32 the measure-
ment error variance for the natural logarithm cD4 was obtained 
from an estimate of a study with a large sample.3 the estimated 
variance was similar in studies with smaller samples (0.2752[14] 
and 0.252[32]); other studies report slightly lower estimates but do 
not necessarily reflect all sources of measurement error.1,8

the measurement error variance for log10 viral load is 
based on lew et al.6 who conclude that variation due to biolog-
ical and technical factors is fairly consistent and in the range of 
0.3 to 0.6 log10 copies/ml. Based on this observation, we may 
assume that the upper and lower limits of a 95% confidence 
interval for the measured viral load correspond to the true viral 
load ±0.5. this yields a measurement error variance of approx-
imately 0.2552 (where 0.255 = 0.5/1.96). this is in line with 
another report (0.2642 for viral loads >500 copies/ml).2

the second assumption states that the probability 
of a missing or incorrectly measured value depends only 
on observed quantities, see etext 1 (http://links.lww.com/
eDe/a933) for a detailed definition. We therefore use the 
term “mismeasured at random” to mean that both the miss-
ingness process and the measurement error process must 
not depend on any unobserved values.

in situations where clerical or administrative errors cause 
a value to be missing, such as in large cohorts where data captur-
ing capacity may be limited, this assumption is certainly fulfilled. 
if the probability of missingness (or occurrence of measurement 
error) depends on captured information, such as treatment facil-
ity, region, or date of treatment initiation, the assumption would 
also be fulfilled. in the case where unobserved values determine 
the probability of missingness (or occurrence of measurement 
error) the assumption would be violated; for example if par-
ticularly high cD4 or viral load measurements were missing 
or incorrectly measured, or if the missing data relates to a spe-
cific healthcare worker and this is not captured. Possible conse-
quences of such situations are described in the discussion.

http://links.lww.com/EDE/A933
http://links.lww.com/EDE/A933
http://links.lww.com/EDE/A933
http://links.lww.com/EDE/A933
http://links.lww.com/EDE/A933
http://links.lww.com/EDE/A933


Copyright © 2015 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Epidemiology  •  Volume 26, Number 5, September 2015 Multiple Overimputation in HIV Research

© 2015 Wolters Kluwer Health, Inc. All rights reserved. www.epidem.com | 631

Simulation Studies

Generation of Data
We generated data of sample size n = 5,000 for the main 

setting, and n = 1,000, 2,500, 7,500, 10,000 for further set-
tings. two covariates, representing true log cD4 count and 
true log viral load, were drawn from log-normal distribu-
tions with mean and standard deviations (adapted from the 
data analysis below) as follows: X N1 4 2861 086∼ log . .,( )  and 
X N2 10 761 8086∼ log . .,( ) . We used a clayton copula (with 

copula parameter θ = 1 indicating moderate association) to 
model the dependency between these two variables.33,34 Sur-
vival times Y were simulated as follows:

Y
U

h X
= −

( ){ }
log

exp

( )
,

0 β

where U is drawn from a distribution that is uniform on the 
interval [0,1], h0 = 0.1, and the linear predictor Xβ is defined 
as −0.3 ln X1 + 0.3 log10 X2. Higher values of X1 are therefore 
associated with a lower risk of a (death) event, as is the case 
for cD4 count, while higher values of X2 are associated with 
a higher risk of an event, as is the case with viral load. the 
censoring times were simulated as

C
U

= −
( )log

0 2.

the observed survival time T in our simulation was thus 
T = min(Y, C).

Measurement Error and Missing Data
to both log-transformed variables, we added measure-

ment error, as in our data, with mean 0 and variances of 0.262 
and 0.2552, respectively.

X1 and X2 were assumed to be missing at random and 
the missing indicator was simulated by means of the following 
missingness function:

π X T T( ) = − + −( ){ }−1 1 1 4
1

exp

this yields approximately 9% missing values per vari-
able. Since, in this simulation, the probability of missingness 
depends on the outcome, one would expect parameter esti-
mates in a regression model of a complete case analysis to be 
biased.35

Estimators and Model
We compare the performance of (1) a complete case 

analysis (omitting observations with missing values), (2) mul-
tiple imputation, and (3) multiple overimputation when esti-
mating the parameters in a cox proportional hazards model. 
We also compare (1) the naive estimator and multiple over-
imputation for the setting without missing data. the multiple 
(over)imputation model included all variables, but T on a log 
scale.

Measures of Performance
We evaluate the bias, mean squared error (MSe), and 

distribution of each estimator of βi  via R = 1,000 runs of the 

simulation study. the bias is estimated as R ir irr

R−1
1
β̆ β−

=∑ , 

the MSe as R ir irr

R−1
1

2
β β−( )=∑ ˘ .

Sensitivity
to explore the sensitivity of our simulation, we varied 

our assumptions with respect to the amount of measurement 
error, the missingness process, the correct specification of the 
measurement error variance, and the linear predictor.

RESULTS

Results of Simulation Studies
One can see that a complete case analysis yields biased 

results both when dealing only with mismeasured data (table, 
“no missing data” panel) and when dealing with mismeasured 
and missing data (table, “missing data” panel). Multiple 
imputation also yields biased results in our missing-at- random 
setting when confronted with measurement error (table, 
“missing data” panel). Multiple overimputation considerably 
reduces bias when compared with the two aforementioned 
approaches (table). comparing the distribution of parameter 

TABLE.  Bias, Variance, and Mean Squared Error in the Main Simulation Study: Results Are Reported for Both β1 and β2—for a 
Naive/CC Analysis, MI, and MO, Respectively

No Missing Data Missing Data

Naive MI MO CC MI MO

Bias β1 0.034 - 0.023 0.033 0.029 0.017

Bias β2 -0.048 - -0.019 -0.045 -0.042 -0.009

Variance β1 0.0006 0.0009 0.0007 0.0007 0.0010

Variance β2 0.0010 0.0017 0.0011 0.0011 0.0019

MSe β1 0.0018 - 0.0014 0.0017 0.0015 0.0012

MSe β2 0.0033 - 0.0021 0.0031 0.0029 0.0020

the left panel lists results for the setting without missing data; the right panel lists the results for the setting with missing data.
cc indicates complete case; Mi, multiple imputation; MO, multiple overimputation.
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estimates from the different methods by means of Wilcoxon 
tests leads to rejection of the null hypotheses of identical dis-
tributions, confirming the shift of multiple overimputation 
estimates toward the true parameter.

the MSe is smaller for multiple overimputation when 
compared with a naive or complete case analysis and multiple 
imputation, but the variance is larger (table). However, the 
success of the three methods with respect to the MSe depends 
on the sample size as highlighted in Figure 1: the larger the 
sample size, the better the performance of multiple overim-
putation relative to the other methods. if the sample size is 
small, multiple overimputation does not outperform the two 
other methods with respect to the MSe. the bias can always 
be reduced using multiple overimputation, regardless of the 
sample size (Figure 1).

Sensitivity analyses show that under a correctly specified 
measurement error variance, changing the assumptions to allow 
for a higher amount of missing data, a different missingness 
process, a larger amount of measurement error, a smaller effect 
of each variable, and the inclusion of more variables, yields sim-
ilar conclusions (eFigure 2; http://links.lww.com/eDe/a933).

Illustrative Example: HIV-Treatment Data from 
IeDEA-SA

We used data from the international epidemiological 
Databases Southern africa cohort collaboration (ieDea-Sa) 
to illustrate the practical application of multiple overimputa-
tion in HiV treatment data. ieDea-Sa is a collaboration of 
19 mostly programmatic cohorts in five southern african 
countries.36 Data were collected at each site as part of routine 
monitoring and were transferred to the coordinating data cen-
tre at the University of cape town, South africa. all contrib-
uting facilities obtained ethical approval from the institutional 
review boards before submitting anonymized patient data to 
the collaboration.

We limited data to four South african cohorts as those 
were the only ones with routinely assayed viral loads. Our 
dataset contained data on nearly 30,000 patients, initiating 

Haart between 1 January 2001 and 1 January 2010; all were 
followed from the time of first starting Haart (baseline).

Multiple overimputation (M = 10) was implemented 
using the “amelia” function of the R-package amelia ii.28 the 
(over)imputation model included the mortality outcome, time 
to event or censoring, cohort, sex, age, year of Haart initia-
tion, baseline ln cD4, and baseline log10 viral load. Our prior 
knowledge about the measurement error process was specified 
by means of the “priors” and “overimp” options of the amelia 
function, adding a prior normal distribution to each measured 
ln cD4 count and log10 viral load where the mean corre-
sponded to the mismeasured value and the measurement error 
variance was set to 0.262 and 0.2552, respectively. in sensitiv-
ity analyses, the measurement error variance was specified as 
0.202 and 0.302 for cD4 and as 0.152 and 0.312 for viral load.

We used the cox proportional hazards model to estimate 
the association of baseline cD4 count, baseline log10 viral 
load, year of treatment initiation, sex, cohort, and age with 
the hazard of death, based on the 10 overimputed datasets and 
applying multiple imputation-combining rules. Baseline cD4 
count and baseline log viral load were included in the model 
first by categorizing the variables and, second, nonlinearly via 
p-splines.37 in addition, as a reference, results from multiple 
imputation and a complete case analysis were estimated.

this example shows how regression estimates of cD4 
count and viral load can vary depending on whether miss-
ing data and measurement error are taken into account. We 
have therefore excluded other variables with high missingness 
percentages (hemoglobin, WHO stage, creatinine, platelets) 
and under-reporting (tuberculosis, cryptococcal meningitis, 
among others) to ensure that comparisons between the dif-
ferent methodological approaches are not complicated by the 
missingness and measurement error related to these variables.

We also performed a similar analysis for the same 
data with time-updated cD4 counts and viral loads being 
included. if a patient did not have a cD4 count/viral load 
measurement for 6 months, then the respective values were 
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FIGURE 1. Results  of  the  simulation 
studies: estimated bias and MSE of β1 
depending on the sample size, in the 
setting where the data are missing at 
random.
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treated as missing. the imputation model included the same 
variables as above, time-updated cD4 and virologic suppres-
sion (viral load <1,000 copies/μl), and took the longitudinal 
structure of the data into account. the prior information for 
time-updated cD4 count was specified as for baseline cD4 
count. time-updated virologic suppression was preferred over 
time-updated viral load due to the bimodal distribution of the 
latter; the corresponding measurement error variance was 
assumed to be 0.232 which related to an assumption of about 
1.5% misclassification (which we assume based on simulated 
viral loads similar to our data, see etext 2; http://links.lww.
com/eDe/a933).

to address the fact that patients lost to follow-up are 
more likely to die, we linked lost patients to the national 
South african vital registry to obtain the vital status of these 
patients. the linkage was performed by a trusted third party, 
the South african Medical research council. lost patients 
with recorded iDs could thus be linked (and their outcome 
ascertained and corrected); these patients were upweighted to 
represent all patients lost to follow-up: we took the inverse of 
the modeled probability of having an iD, based on a logistic 
regression model including age, sex, year of treatment initia-
tion and cohort, to account for any differences between link-
able and other patients lost to follow-up (patients with and 
without iD are known to be very similar though there are typi-
cally differences by cohort and year38,39). Patients not lost to 

follow-up received a weight of one, while those lost to follow-
up and not linkable received a weight of zero.39 alternatively, 
missing outcome data of patients lost to follow-up could have 
been imputed with multiple overimputation.

From the 29,256 patients included in our analysis more 
than 10% had a missing baseline cD4 count and more than 
60% had a missing baseline viral load. Median follow-up 
time (1st; 3rd quartile) was 498 (197; 878) days. the eMB 
algorithm utilizing multiple overimputation converged suc-
cessfully for both the cross-sectional and longitudinal data 
examples.

the results of the cox regression analysis are presented 
in Figure 2 and etable 1 (http://links.lww.com/eDe/a933). 
Multiple overimputation emphasizes more strongly the rela-
tion between a high baseline cD4 count and a decreased haz-
ard of death compared with the complete case analysis and 
multiple imputation (hazard ratio for cD4 > 200 cells/mm3 
vs. cD4 < 25 cells/mm3: 0.21 [95% confidence interval: 
0.18, 0.24] vs. 0.38 [0.29, 0.48] for the complete case analy-
sis and 0.29 [0.25, 0.34] for multiple imputation). looking 
at the nonlinear association of cD4 count with the hazard 
of death, or excluding baseline viral load from the analysis, 
or adding additional variables leads to the same conclusions 
(Figure 2a, etables 2 and 3; http://links.lww.com/eDe/
a933): the higher the cD4 count, the lower the hazard of 
death; similarly, the larger the number of viral copies the 

FIGURE 2. Nonlinear  association  of 
(A)  baseline  CD4  and  (B)  baseline 
log10  viral  load  with  the  hazard  of 
death,  modeled  via  p-splines.  The 
estimates  of  (C)  categorical  time-
updated  CD4  (reference  category: 
<25  cells/mm3)  and  (D)  categorical 
time-updated  virological  suppression 
(reference  category:  unsuppressed) 
are obtained from a Cox model fitted 
onto the longitudinal data. Results are 
reported  for  a  complete  case  analy-
sis, multiple imputation, and multiple 
overimputation and relate to the illus-
trative  data  example.  The  intervals 
reported in (C) and (D) are 95% con-
fidence intervals.
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greater the risk of death, which is more pronounced for mul-
tiple overimputation when compared with multiple imputa-
tion (Figure 2B). the sensitivity analyses show that different 
assumptions about the measurement error variance yield an 
almost identical nonlinear association of cD4 count with 
mortality after applying multiple overimputation. assuming 
a much smaller measurement error variance for log10 viral 
load yields similar results for multiple overimputation and 
multiple imputation (eFigure 1; http://links.lww.com/eDe/
a933). regression coefficients of covariates without mea-
surement error and missing data did not vary much between 
the three different approaches.

the longitudinal cox regression analysis (Figure 2c, D, 
etable 4; http://links.lww.com/eDe/a933) yields attenuated 
estimates for cD4 count in the complete case analysis and 
multiple imputation compared with multiple overimputation 
(Hr for cD4 > 200 cells/mm3 vs. cD4 < 25 cells/mm3: 0.10 
and 0.13 vs. 0.06); this analysis also shows that a complete 
case analysis yields very different results from the imputation 
approaches when assessing the estimates of viral suppression 
(Hr 0.28 vs. 0.67 and 0.60).

in both analyses, the confidence intervals for all point 
estimates of multiple imputation and multiple overimputation 
were similarly wide (etables 1 and 3; http://links.lww.com/
eDe/a933). it can also be seen that in all analyses the correc-
tion made for measurement error was at least as great as the 
correction made to account for missing data (Figure 2, etables 
1–3; http://links.lww.com/eDe/a933).

the above analyses demonstrate that multiple overim-
putation for both baseline and follow-up cD4 count and viral 
load data can be easily incorporated into existing software 
(amelia ii for r), that the overimputation algorithm con-
verges successfully for this data, that results may vary depend-
ing on whether one adjusts for missing data and measurement 
error or not, and that attenuation due to measurement error 
can occur, but this may not always be the case.

DISCUSSION

Statement of Principal Findings
We have demonstrated that multiple overimputation 

offers a convenient approach to address both measurement 
error and missing data and can be implemented easily for a 
variety of situations relevant to HiV research. Our simulation 
studies suggest that this approach is able to reduce bias and 
MSe in the context of survival analyses.

Strengths of the Study
this is, to the best of our knowledge, the first attempt 

to address simultaneously the treatment of missing data and 
measurement error in HiV research under a general frame-
work. it is fast and easy to implement and, after applying 
multiple overimputation, many estimators relevant to HiV 
research can be obtained: for example the Kaplan–Meier esti-
mator, and estimates from survival models such as the cox 

proportional hazards model and parametric survival models, 
among many others. We have demonstrated that existing clini-
cal knowledge about the accuracy of cD4 measurements can 
be used to specify the measurement error process, model and 
variance, which we have shown to be crucial for the success of 
method; moreover, our simulations highlight that not only for 
generalized linear models (as partially investigated by Black-
well et al.19) but also in survival analyses multiple overimputa-
tion can be successful.

Limitations
there remain, however, some limitations: as with mul-

tiple imputation, multiple overimputation cannot necessarily 
address situations where data are mismeasured not at random 
because the overimputed values drawn with the eMB algo-
rithm may not properly reflect the joint distribution of both 
the data and the missingness/mismeasurement process (etext 
1, formula [1]; http://links.lww.com/eDe/a933). in this case, 
the application of multiple overimputation can lead to biased 
estimates. Using a complete case analysis (and possibly cor-
recting for measurement error in the respective sample) can 
also yield biased estimates in this setting, i.e., when the prob-
ability of a missing value depends on the outcome or exter-
nal variables.31,40 However, if the probability of missingness 
depends on the unobserved values of the variable itself, a 
complete case analysis still yields valid inference and may be 
preferable to multiple overimputation.40 as we have argued 
above, in many cases, we would expect cD4 and viral load 
data to be mismeasured at random; however, time-updated 
viral load may be missing not at random if unobserved treat-
ment interruptions due to nonadherence predict missingness.

We also have assumed that a successful specification of 
the imputation model is straightforward. the implementation 
of multiple overimputation is closely related to the joint mod-
eling approach of amelia ii and thus natural constraints relate 
to specifying suitable transformations for skewed variables, 
additional imputation uncertainty with respect to categori-
cal variables, and restrictions regarding complex longitudi-
nal data.28,41 an inappropriate imputation model or incorrect 
assumptions about the measurement error process can poten-
tially cause multiple overimputation to be inferior compared 
with naive estimators.

Meaning of the Results
Our results suggest that regression estimates related to 

true cD4 count and true viral load may be biased in many 
studies. Both markers are a cornerstone in HiV research and 
thus it may be advisable to consider accounting for error in 
their measurement. Our data example illustrates how the 
application of multiple overimputation can change regression 
estimates: for example, the association of cD4 count with the 
hazard of death was more strongly pronounced under mul-
tiple overimputation compared with the approaches which 
neglected measurement error. this does not, however, imply 
that for any regression analysis the estimates of a complete 

http://links.lww.com/EDE/A933
http://links.lww.com/EDE/A933
http://links.lww.com/EDE/A933
http://links.lww.com/EDE/A933
http://links.lww.com/EDE/A933
http://links.lww.com/EDE/A933
http://links.lww.com/EDE/A933


Copyright © 2015 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Epidemiology  •  Volume 26, Number 5, September 2015 Multiple Overimputation in HIV Research

© 2015 Wolters Kluwer Health, Inc. All rights reserved. www.epidem.com | 635

case analysis are biased toward the null, nor does it imply that 
corrected estimates of cD4 count are necessarily better just 
because their estimates yield stronger associations than naive 
analyses.

While our data example is illustrative and descriptive in 
nature, and none of the reported regression coefficients report 
a causal relation, there are several applications for which our 
findings are of interest. For example, predictive models can 
be used to inform mathematical modeling studies that require 
mortality rates stratified by true cD4 count and viral load.42,43 
it is evident from both our simulation studies and the data 
example that adjusting for missing data and measurement 
error can yield different predicted mortality rates; indeed, fit-
ting the predictive model of May et al.44 to our data shows that 
the differences between multiple overimputation and naive 
approaches found in our illustrative example persist in this 
context (etable 5; http://links.lww.com/eDe/a933).

Our numerical investigations confirm previous studies 
showing that even a moderate amount of measurement error 
and/or missing data can cause bias in regression estimates.9,45 
Multiple overimputation reduced the bias in these estimates 
and also improved the MSe if the sample size was not too 
small. the latter observation implies that multiple overimpu-
tation may yield estimators with a higher variance compared 
with a naive analysis (reflecting the underlying uncertainty) 
and the success with respect to the MSe depends on the sam-
ple size. this is in line with the literature on measurement 
error correction in the case of complete data.9,45,46 generally, 
multiple overimputation yields asymptotically unbiased esti-
mates under the mismeasured at random assumption (etext 1; 
http://links.lww.com/eDe/a933) given an appropriate impu-
tation model is used, but its performance may vary from con-
text to context.

Research in Context
Methods dealing with measurement error in cD4 count 

have already been suggested for particular applications and 
models under the assumption of no missing data.10–18 One 
could think of applying these methods in the appropriate 
context in conjunction with multiple imputation. Since these 
methods are often very specific, combining the more general 
simulation extrapolation method47 with multiple imputation 
might be a fruitful alternative. an implementation of simu-
lation extrapolation in the statistical software r48 is already 
available for (generalized) linear models, allows for both 
homoscedastic and heteroscedastic measurement error and 
can be naturally combined with existing multiple imputation 
procedures in R28; similar implementations are available for 
Stata.49 However, it is an open question whether the imputa-
tions generated from mismeasured data yield valid inference 
or not.

it also remains important to check model assumptions 
after applying multiple overimputation: for example, when 
assessing the proportional hazards assumption of a cox 

proportional hazards model, one may evaluate graphical diag-
nostics in each overimputed dataset; or, alternatively, the esti-
mates of an interaction of analysis time with the covariate of 
interest can be easily combined by means of rubin’s rules.

We have concentrated our investigations on measure-
ment error and missing data in cD4 counts and viral load 
measurements. there are, however, many more variables 
prone to measurement error and missing data and relevant in 
HiV research: cD4 percentage, hemoglobin, creatinine, p24 
antigenemia, concentrations of antiretroviral drugs, among 
others. existing knowledge can be used to account for both 
measurement error and missing data in many of these vari-
ables.1,2,8 We stress, however, that an overestimated mea-
surement error variance may yield biased estimates when 
applying multiple overimputation, see eFigure2 (http://links.
lww.com/eDe/a933) and Blackwell et al.19 complicated 
measurement processes such as in pharmacokinetics, where 
metabolism, concomitant medication, and genetic factors 
influence measurement error, may, however, require special 
care and knowledge.

CONCLUSION
Our investigations show that multiple overimputation is 

a convenient and possibly promising approach to account for 
both missing and mismeasured data in HiV research. Further 
studies are needed to explore the implications, feasibility, and 
challenges of multiple overimputation for other models and 
applications.

ACKNOWLEDGMENTS
We thank Reneè de Waal, Graeme Meintjes, and Craig 

Corcoran for their helpful comments regarding the clinical 
meaning, quantification, and interpretation of measurement 
error in CD4 count and viral load.

REFERENCES
 1. raboud JM, Haley l, Montaner JS, Murphy c, Januszewska M, Schechter 

Mt. Quantification of the variation due to laboratory and physiologic 
sources in cD4 lymphocyte counts of clinically stable HiV-infected in-
dividuals. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;10(Suppl 
2):S67–S73.

 2. raboud JM, Montaner JS, conway B, et al. Variation in plasma rna levels, 
cD4 cell counts, and p24 antigen levels in clinically stable men with human 
immunodeficiency virus infection. J Infect Dis. 1996;174:191–194.

 3. Hoover Dr, graham nM, chen B, et al. effect of cD4+ cell count mea-
surement variability on staging HiV-1 infection. J Acquir Immune Defic 
Syndr. 1992;5:794–802.

 4. Yu lM, easterbrook PJ, Marshall t. relationship between cD4 count and 
cD4% in HiV-infected people. Int J Epidemiol. 1997;26:1367–1372.

 5. Best SJ, gust aP, Johnson ei, Mcgavin cH, Dax eM. Quality of human 
immunodeficiency virus viral load testing in australia. J Clin Microbiol. 
2000;38:4015–4020.

 6. lew J, reichelderfer P, Fowler M, et al. Determinations of levels of hu-
man immunodeficiency virus type 1 rna in plasma: reassessment of pa-
rameters affecting assay outcome. tUBe Meeting Workshop attendees. 
technology Utilization for HiV-1 Blood evaluation and Standardization 
in Pediatrics. J Clin Microbiol. 1998;36:1471–1479.

 7. van rensburg eJ, tait K, Watt a, Schall r. comparative evaluation of 
the roche cobas ampliPrep/cobas taqMan HiV-1 version 2 test using 

http://links.lww.com/EDE/A933
http://links.lww.com/EDE/A933
http://links.lww.com/EDE/A933
http://links.lww.com/EDE/A933


Copyright © 2015 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Schomaker et al. Epidemiology  •  Volume 26, Number 5, September 2015

636 | www.epidem.com © 2015 Wolters Kluwer Health, Inc. All rights reserved.

the taqMan 48 analyzer and the abbott realtime HiV-1 assay. J Clin 
Microbiol. 2011;49:377–379.

 8. Malone Jl, Simms te, gray gc, Wagner KF, Burge Jr, Burke DS. 
Sources of variability in repeated t-helper lymphocyte counts from hu-
man immunodeficiency virus type 1-infected patients: total lymphocyte 
count fluctuations and diurnal cycle are important. J Acquir Immune Defic 
Syndr. 1990;3:144–151.

 9. carroll rJ, ruppert D, Stefanski la, crainiceanu c. Measurement Error 
in Nonlinear Models: A Modern Perspective. 2nd ed. Boca raton, Fl; 
london: chapman & Hall/crc; 2006.

 10. Song X, Ma S. Multiple augmentation for interval-censored data with 
measurement error. Stat Med. 2008;27:3178–3190.

 11. Bycott P, taylor J. a comparison of smoothing techniques for cD4 data 
measured with error in a time-dependent cox proportional hazards mod-
el. Stat Med. 1998;17:2061–2077.

 12. tsiatis aa, Degruttola V, Wulfsohn MS. Modeling the relationship of sur-
vival to longitudinal data measured with error - applications to survival 
and cD4 counts in patients with aiDS. J Am Stat Assoc. 1995;90:27–37.

 13. cole Sr, Jacobson lP, tien Pc, Kingsley l, chmiel JS, anastos K. 
Using marginal structural measurement-error models to estimate the 
long-term effect of antiretroviral therapy on incident aiDS or death. Am J 
Epidemiol. 2010;171:113–122.

 14. Huang YJ, Wang cY. cox regression with accurate covariates unas-
certainable: a nonparametric-correction approach. J Am Stat Assoc. 
2000;95:1209–1219.

 15. liu W, Wu l. a semiparametric nonlinear mixed-effects model with 
non-ignorable missing data and measurement errors for HiV viral data. 
Comput Stat Data An. 2008;53:112–122.

 16. nakamura t. Proportional hazards model with covariates subject to mea-
surement error. Biometrics. 1992;48:829–838.

 17. Song X, Davidian M, tsiatis aa. an estimator for the proportional haz-
ards model with multiple longitudinal covariates measured with error. 
Biostatistics. 2002;3:511–528.

 18. Wulfsohn MS, tsiatis aa. a joint model for survival and longitudinal 
data measured with error. Biometrics. 1997;53:330–339.

 19. Blackwell M, Honaker J, King g. a unified approach to measurement 
error and missing data: overview and details and extensions. Sociol 
Methods Res. 2015. in press. available at: http://j.mp/jqdj72. doi: 
10.1177/0049124115585360 and doi:10.1177/0049124115589052

 20. guolo a. robust techniques for measurement error correction: a review. 
Stat Methods Med Res. 2008;17:555–580.

 21. Stefanski la. Measurement error models. J Am Stat Assoc. 
2000;95:1353–1358.

 22. Braitstein P, Brinkhof MW, Dabis F, et al.; antiretroviral therapy in 
lower income countries (art-linc) collaboration; art cohort 
collaboration (art-cc) groups. Mortality of HiV-1-infected patients in 
the first year of antiretroviral therapy: comparison between low-income 
and high-income countries. Lancet. 2006;367:817–824.

 23. rosen S, Fox MP, gill cJ. Patient retention in antiretroviral therapy 
programs in sub-Saharan africa: a systematic review. PLoS Med. 
2007;4:e298.

 24. Horton nJ, Kleinman KP. Much ado about nothing: a comparison of miss-
ing data methods and software to fit incomplete data regression models. 
Am Stat. 2007;61:79–90.

 25. little r, rubin D. Statistical Analysis with Missing Data. new York, nY: 
Wiley; 2002.

 26. rubin DB. Multiple imputation after 18+ years. J Am Stat Assoc. 
1996;91:473–489.

 27. Honaker J, King g. What to do about missing values in time-series cross-
section data? Am J Polit Sci. 2010;54:561–581.

 28. Honaker J, King g, Blackwell M. amelia ii: a program for missing data. 
J Stat Softw. 2011;45:1–47.

 29. Dempster a, laird n, rubin D. Maximum likelihood from incomplete 
data via the eM algorithm. J R Stat Soc B. 1977;39:1–38.

 30. goodnight JH. tutorial on the sweep operator. Am Stat. 1979;33:149–158.
 31. Schafer Jl, graham JW. Missing data: our view of the state of the art. 

Psychol Methods. 2002;7:147–177.
 32. Hughes MD, Stein DS, gundacker HM, Valentine Ft, Phair JP, Volberding 

Pa. Within-subject variation in cD4 lymphocyte count in asymptomatic 
human immunodeficiency virus infection: implications for patient moni-
toring. J Infect Dis. 1994;169:28–36.

 33. Yan J. enjoy the joy of copulas: with package copula. J Stat Softw. 
2007;21:1–21.

 34. trivedi P, Zimmer D. copula modeling: an introduction for practitioners. 
Found Trends Economet. 2005;1:1–111.

 35. little rJa. regression with missing Xs: a review. J Am Stat Assoc. 
1992;87:1227–1237.

 36. egger M, ekouevi DK, Williams c, et al. cohort profile: the international 
epidemiological databases to evaluate aiDS (ieDea) in sub-Saharan 
africa. Int J Epidemiol. 2012;41:1256–1264.

 37. eilers PHc, Marx BD. Flexible smoothing with B-splines and penalties. 
Stat Sci. 1996;11:89–102.

 38. Boulle a, Schomaker M, May Mt, et al. Mortality in patients with HiV-1 infec-
tion starting antiretroviral therapy in South africa, europe, or north america: 
a collaborative analysis of prospective studies. PLoS Med. 2014;11:e1001718.

 39. Schomaker M, gsponer t, estill J, Fox M, Boulle a. non-ignorable loss 
to follow-up: correcting mortality estimates based on additional outcome 
ascertainment. Stat Med. 2014;33:129–142.

 40. little rJ, Zhang nH. Subsample ignorable likelihood for regression anal-
ysis with missing data. J R Stat Soc C-Appl. 2011;60:591–605.

 41. Schomaker M, Heumann c. Model selection and model averaging after 
multiple imputation. Comput Stat Data An. 2014;71:758–770.

 42. Badri M, cleary S, Maartens g, et al. When to initiate highly active anti-
retroviral therapy in sub-Saharan africa? a South african cost-effective-
ness study. Antivir Ther. 2006;11:63–72.

 43. goldie SJ, Yazdanpanah Y, losina e, et al. cost-effectiveness of HiV 
treatment in resource-poor settings–the case of côte d’ivoire. N Engl J 
Med. 2006;355:1141–1153.

 44. May M, Boulle a, Phiri S, et al. Prognosis of patients with HiV-1 infec-
tion starting therapy in sub-Saharan africa: a collaborative analysis of 
scale-up programmes. Lancet. 2010;376:449–457.

 45. Stefanski la. the effects of measurement error on parameter-estimation. 
Biometrika. 1985;72:583–592.

 46. cole Sr, chu H, greenland S. Multiple-imputation for measurement-
error correction. Int J Epidemiol. 2006;35:1074–1081.

 47. cook Jr, Stefanski la. Simulation-extrapolation estimation in paramet-
ric measurement error models. J Am Stat Assoc. 1994;89:1314–1328.

 48. lederer W, Kuechenhoff H. simex: SiMeX- and McSiMeX-algorithm 
for measurement error models. r package version 1–5. 2013.

 49. Hardin J, Schmiediche H, carroll rJ. the simulation extrapolation meth-
od for fitting generalized linear models with additive measurement error. 
Stata J. 2003;3:373–385.

http://j.mp/jqdj72


 

Supplementary Material  

(Schomaker,M., Hogger, S., Johnson, L., Hoffmann, C., Bärnighausen, T., Heumann, C., Simultaneous Treatment 

of Missing Data and Measurement Error in HIV Research using Multiple Overimputation, 2015, Epidemiology) 

eTable 1: Mortality in South African patients after starting antiretroviral treatment. Cox 

regression estimates, reported as hazard ratios, for a complete case analysis, multiple 

imputation and multiple overimputation. 95% confidence intervals are reported in brackets. 

All results relate to the data from the illustrative example and should not be interpreted 

causally. 

  

  Complete Cases Multiple Imputation Multiple Overimputation 

Baseline CD4     

<25 1 1 1 

25-50 0.73 [0.62;0.87] 0.74 [0.67;0.82] 0.63 [0.58;0.70] 

50-100 0.47 [0.40;0.56] 0.49 [0.45;0.54] 0.47 [0.43;0.52] 

100-200 0.33 [0.28;0.38] 0.33 [0.30;0.36] 0.34 [0.30;0.38] 

>200 0.38 [0.29;0.48] 0.29 [0.25;0.34] 0.21 [0.18;0.24] 

Baseline log10 viral load     

<4  1 1 1 

4 to 5 1.29 [1.07;1.57] 1.18 [1.07;1.31] 1.20 [1.08;1.33] 

5 to 6 1.54 [1.26;1.88] 1.41 [1.26;1.57] 1.42 [1.27;1.59] 

>6 1.71 [1.27;2.29] 1.60 [1.34;1.91] 1.66 [1.37;2.01] 

     

Sex     

Female 1 1 1 

Male 1.34 [1.19;1.51] 1.31 [1.22;1.40] 1.31 [1.22;1.41] 

    

Age     

<25 1 1 1 

25-35 1.01 [0.81;1.26] 1.00 [0.87;1.16] 1.04 [0.90;1.20] 

35-45 1.05 [0.83;1.32] 1.09 [0.94;1.26] 1.14 [0.99;1.32] 

>45 1.22 [0.95;1.57] 1.36 [1.16;1.59] 1.37 [1.17;1.60] 

    

Year     

before 2004 1 1 1 

2004-2006 0.94 [0.75;1.18] 1.27 [1.06;1.50] 1.27 [1.06;1.50] 

2007 and after 1.01 [0.76;1.34] 1.52 [1.25;1.84] 1.53 [1.26;1.85] 

     

Cohort     

A  1 1 1 

B 0.81 [0.67;0.97] 0.93 [0.83;1.04] 0.93 [0.83;1.04] 

C 0.70 [0.44;1.13] 0.88 [0.76;1.00] 0.89 [0.78;1.02] 

D 0.85 [0.71;1.01] 0.96 [0.88;1.06] 0.95 [0.86;1.04] 



 

eTable 2: Mortality in South African patients after starting antiretroviral treatment.  

Estimates from a Cox regression model, reported as hazard ratios, if baseline viral load was 

not included in the analysis. Results are reported for a complete case analysis, multiple 

imputation and multiple overimputation. 95% confidence intervals are reported in brackets. 

All results relate to the data from the illustrative example and should not be interpreted 

causally. 

 

  Complete Cases Multiple Imputation Multiple Overimputation 

Baseline CD4     

<25 1 1 1 

25-50 0.75 [0.63;0.89] 0.73 [0.66;0.81] 0.62 [0.57;0.68] 

50-100 0.47 [0.40;0.56] 0.48 [0.44;0.53] 0.46 [0.42;0.50] 

100-200 0.32 [0.27;0.37] 0.32 [0.29;0.35] 0.33 [0.29;0.36] 

>200 0.36 [0.28;0.46] 0.28 [0.24;0.33] 0.20 [0.17;0.23] 

    

Sex    

Female 1 1 1 

Male 1.36 [1.21;1.53] 1.33 [1.24;1.42] 1.33 [1.24;1.43] 

    

Age    

<25 1 1 1 

25-35 1.00 [0.80;1.25] 1.00 [0.87;1.15] 1.04 [0.90;1.21] 

35-45 1.04 [0.83;1.31] 1.09 [0.94;1.26] 1.15 [1.00;1.33] 

>45 1.22 [0.95;1.57] 1.36 [1.16;1.59] 1.39 [1.19;1.62] 

    

Year    

before 2004 1 1 1 

2004-2006 0.96 [0.76;1.20] 1.28 [1.07;1.52] 1.27 [1.07;1.52] 

2007 and after 0.99 [0.74;1.31] 1.51 [1.24;1.83] 1.52 [1.25;1.85] 

    

Cohort    

A  1 1 1 

B 0.86 [0.72;1.03] 0.98 [0.88;1.10] 0.99 [0.88;1.11] 

C 0.73 [0.45;1.16] 0.89 [0.77;1.02] 0.90 [0.78;1.03] 

D 0.81 [0.69;0.95] 0.91 [0.83;1.00] 0.90 [0.82;0.99] 

 

 

 

 

 



 

eTable 3: Mortality in South African patients after starting ART. Estimates from a Cox 

regression model, reported as hazard ratios, if baseline TB, WHO stage, and haemoglobin 

are added to the analysis. Results are reported for a complete case analysis, multiple 

imputation and multiple overimputation. 95% CI’s are reported in brackets. All results relate 

to the data from the illustrative example and should not be interpreted causally. 

  Complete Cases Multiple Imputation Multiple Overimputation 

Baseline CD4 
 

  

<25 1 1 1 

25-50 0.74 [0.58;0.94] 0.80 [0.72;0.88] 0.68 [0.62;0.74] 

50-100 0.5 [0.39;0.63] 0.56 [0.51;0.62] 0.50 [0.45;0.55] 

100-200 0.48 [0.39;0.6] 0.41 [0.37;0.45] 0.37 [0.33;0.42] 

>200 0.49 [0.35;0.7] 0.37 [0.32;0.44] 0.24 [0.21;0.28] 

Baseline log10 viral load 
 

  

<4  1 1 1 

4 to 5 1.43 [1.07;1.91] 1.11 [1.01;1.23] 1.14 [1.03;1.27] 

5 to 6 1.53 [1.14;2.06] 1.24 [1.11;1.38] 1.26 [1.13;1.42] 

>6 1.28 [0.85;1.94] 1.32 [1.11;1.58] 1.43 [1.18;1.73] 

Prevalent TB 
 

  

no 1 1 1 

yes 1.98 [1.38;2.83] 1.11 [0.96;1.28] 1.07 [0.93;1.24] 

Baseline WHO stage 
 

  

I & II 1 1 1 

III 2.45 [1.68;3.56] 1.4 [1.26;1.55] 1.34 [1.21;1.48] 

IV 3.40 [2.27;5.1] 1.85 [1.67;2.05] 1.77 [1.60;1.96] 

Hemoglobin  
 

  

per gm/dL 0.85 [0.82;0.88] 0.9 [0.89;0.91] 0.89 [0.88;0.9] 

Sex    

Female 1 1 1 

Male 1.34 [1.13;1.59] 1.44 [1.34;1.54] 1.44 [1.34;1.54] 

Age    

<25 1 1 1 

25-35 0.93 [0.7;1.24] 1 [0.87;1.16] 1.04 [0.91;1.21] 

35-45 0.91 [0.68;1.24] 1.1 [0.95;1.27] 1.17 [1.01;1.36] 

>45 1.14 [0.81;1.58] 1.39 [1.19;1.62] 1.44 [1.23;1.68] 

Year    

before 2004 1 1 1 

2004-2006 0.77 [0.56;1.08] 1.32 [1.11;1.57] 1.33 [1.12;1.58] 

2007 and after 0.77 [0.51;1.16] 1.56 [1.29;1.89] 1.61 [1.32;1.95] 

Cohort    

A 1 1 1 

B 0.59 [0.45;0.76] 0.86 [0.77;0.97] 0.87 [0.77;0.98] 

C ---
1
 0.87 [0.76;1] 0.88 [0.77;1.01] 

D ---
1 

0.97 [0.88;1.07] 0.97 [0.88;1.07] 

                                                           
1
 Cohorts C and D are excluded in the complete case analysis because of missing WHO stage data 



 

eTable 4: Mortality in South African patients after starting antiretroviral treatment. Cox 

regression estimates, reported as hazard ratios, based on the longitudinal data, stratified by 

cohort. Results are reported for a complete case analysis, multiple imputation and multiple 

overimputation. 95% confidence intervals are reported in brackets. All results relate to the 

data from the illustrative example and should not be interpreted causally. 

  Complete Cases Multiple Imputation Multiple Overimputation 

Time-updated CD4     

<25 1 1 1 

25-50 0.76 [0.56;1.03] 0.72 [0.63;0.82] 0.45 [0.40;0.51] 

50-100 0.39 [0.29;0.52] 0.42 [0.37;0.48] 0.25 [0.22;0.29] 

100-200 0.25 [0.19;0.33] 0.22 [0.19;0.25] 0.14 [0.12;0.16] 

>200 0.10 [0.07;0.16] 0.13 [0.11;0.15] 0.06 [0.05;0.08] 

Time-updated     

virological sup.     

unsuppressed 1 1 1 

suppressed 0.28 [0.16;0.47] 0.67 [0.59;0.76] 0.60 [0.55;0.66] 

Sex     

Female 1 1 1 

Male 1.39 [1.13;1.70] 1.21 [1.11;1.33] 1.19 [1.08;1.30] 

Age     

<25 1 1 1 

25-35 0.92 [0.61;1.36] 0.99 [0.83;1.19] 1.03 [0.85;1.23] 

35-45 1.07 [0.72;1.61] 1.19 [0.91;1.32] 1.15 [0.95;1.39] 

>45 1.31 [0.85;2.03] 1.45 [1.19;1.76] 1.43 [1.17;1.75] 

Year     

before 2004 1 1 1 

2004-2006 0.83 [0.58;1.19] 1.20 [0.99;1.45] 1.11 [0.91;1.36] 

2007 and after 0.60 [0.38;0.96] 1.08 [0.86;1.35] 0.96 [0.76;1.20] 

 

 

 

 

 

 

 

 

 



 

eTable 5: Mortality in South African patients after starting antiretroviral treatment.  

Estimates from a Cox regression model, reported as hazard ratios, if the variables and 

categorizations from the predictive model of May et al.2 (developed in 3 sub-Saharan 

countries) are used. The analysis is restricted to one year on antiretroviral treatment. 95% 

confidence intervals are reported in brackets. All results relate to the data from the 

illustrative example and should not be interpreted causally. 

 

  Complete Cases Multiple 
Imputation 

Multiple 
Overimputation 

May et al.
2 

Baseline CD4      

<25 1 1 1 1 

25-50 0.67 [0.51;0.88] 0.76 [0.68;0.85] 0.61 [0.55;0.67] 0.76 [0.62; 0.94] 

50-100 0.39 [0.29;0.52] 0.51 [0.46;0.57] 0.43 [0.39;0.48] 0.46 [0.38; 0.57] 

100-200 0.34 [0.26;0.43] 0.34 [0.30;0.38] 0.31 [0.27;0.35] 0.35 [0.28; 0.42] 

>200 0.34 [0.22;0.52] 0.32 [0.26;0.38] 0.20 [0.17;0.24] 0.29 [0.22; 0.38] 

     

Sex     

Male 1 1 1 1 

Female 0.8 [0.66;0.98] 0.71 [0.66;0.77] 0.71 [0.66;0.77] 0.68 [0.58; 0.79] 

     

Weight (in kg)     

<45 1 1 1 1 

45-50 0.65 [0.49;0.87] 0.69 [0.61;0.78] 0.68 [0.61;0.77] 0.59 [0.48; 0.72] 

50-60 0.33 [0.26;0.43] 0.41 [0.37;0.46] 0.39 [0.35;0.44] 0.40 [0.33; 0.48] 

>60 0.24 [0.18;0.32] 0.30 [0.27;0.34] 0.29 [0.26;0.33] 0.24 [0.19; 0.30] 

     

WHO stage     

I and II 1 1 1 1 

III and IV 2.49 [1.58;3.92] 1.61 [1.44;1.81] 1.69 [1.51;1.9] 2.72 [1.87; 3.95] 

     

Age (in years)     

<40  1 1 1  

>40 1.07 [0.86;1.33] 1.23 [1.13;1.34] 1.21 [1.11;1.32] 1.43 [1.23; 1.66] 

 

 

 

 

 

                                                           
2
 May M, Boulle A, Phiri S, et al. Prognosis of patients with HIV-1 infection starting therapy in sub-Saharan 

Africa: a collaborative analysis of scale-up programmes. Lancet. 2010;376:449-457. 



 

eFigure 1: Results of the Cox regression analysis when using different assumptions about the 

measurement error variance: (a) σUij

2 =0.202 for CD4 count and σUij

2 =0.152for log viral load 

(b) σUij

2 =0.302 for CD4 count and σUij

2 =0.312 for log viral load. 

(a) (b) 

  

  
 

 

 

 

 

 

 



eFigure 2: Results of variations of the simulation study. The settings specified in the captions refer to changes compared to
the main setting in the manuscript.

Variation of missingness assumption

(a) Data missing completely at random, with 10% missingness for both X1 and X2 (b) Data missing completely at random, with 40% missingness for both X1 and X2
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(c) Data missing at random, but with higher missingness probability, ca. 20% for

both X1 and X2, defined via πX(T ) = 1− {0.02T 2 + 1}−1
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Variation of the measurement error variance

(d) Larger measurement error variance, 0.32 and 0.312 for both X1 and X2 respec-

tively, no missing data

(e) Larger measurement error variance, 0.32 and 0.312 for both X1 and X2 respec-

tively, with missing data
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(f) Smaller measurement error variance, 0.22 and 0.152 for both X1 and X2 respec-

tively, no missing data

(g) Smaller measurement error variance, 0.22 and 0.152 for both X1 and X2 respec-

tively, with missing data
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Variation of the linear predictor

(h) The linear predictor Xβ is defined as −0.1 lnX1 + 0.1 log10X2, no missing data (i) The linear predictor Xβ is defined as −0.1 lnX1 + 0.1 log10X2, with missing data

●●

●

●
●

●●●
●

●

●●●●

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

E
st

im
at

es

X1 X2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

●●●

●

●

●

●
●●

●

●

●

●●

●
●●

●
●

●

true parameter
complete cases
multiple overimputation

●●●

●

●
●
●●
●●
●

●

●
●

●

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

E
st

im
at

es

●●

●

●
●
●●●●

● ●
●

●
●

X1 X2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

●●

●

●
●
●●
●

●

●
●

true parameter
complete cases
multiple imputation
multiple overimputation

Bias β1 Bias β2 MSE β1 MSE β2

Complete cases 0.012 -0.017 0.0007 0.0014

Multiple imputation – – – –

Multiple overimputation 0.005 -0.005 0.0009 0.0018

Bias β1 Bias β2 MSE β1 MSE β2

Complete cases 0.011 -0.016 0.0008 0.0015

Multiple imputation 0.010 -0.015 0.0008 0.0015

Multiple overimputation 0.004 -0.001 0.0011 0.0023

5



(j) Additional 4 covariates: X3 ∼ Binom(0.65), X4 ∼ Weibull(1.75, 1.9), X5 ∼
Exp(1), X6 ∼ Gamma(0.25, 2), β = (−0.3, 0.3, 0, 0, 0, 0), no missing data

(k) Additional 4 covariates: X3 ∼ Binom(0.65), X4 ∼ Weibull(1.75, 1.9), X5 ∼
Exp(1), X6 ∼ Gamma(0.25, 2), β = (−0.3, 0.3, 0, 0, 0, 0), with missing data
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Wrong assumption for measurement error variance used

(l) Wrong assumption used for measurement error variance: 0.362 and 0.3552 for X1

and X2 respectively, no missing data

(m) Wrong assumption used for measurement error variance: 0.362 and 0.3552 for

X1 and X2 respectively, with missing data
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eText 1: Outline of the technical background of multiple overimputation. More details can be found in

Blackwell et al. (2015b), Blackwell et al. (2015a) and Honaker and King (2010). For a better understanding of

the technical details the reader may also wish to consult Rubin (1996) for more insight on multiple imputation,

King et al. (2001) for useful technicalities of an algorithm similar to EMB, Dempster et al. (1977) for the

EM algorithm, and Goodnight (1979) for the details of the sweep operator.

1. Data and notation: Consider a data set X consisting of observations xi = (xi1, . . . ,xip). Let eij be

an indicator whether xij was measured with error and mij be an indicator if xij is missing. The

data may consist of perfectly measured values xobs
i = {xij ; eij = mij = 0}, values which are missing,

xmis
i = {xij ;mij = 1}, and values measured with error (wij) as a proxy to the latent ‘true’ unobserved

values xerrij , xerr
i = {xij ; eij = 1}, wi = {wij ; eij = 1}. Thus, the observed data for any observation is

di = (xobs
i ,wi) while the true underlying data is xi = (xobs

i ,xerr
i ,xmis

i ).

2. Observed data probability density function: The probability density function for the observed data

equates to

p(di,mi, ei|θ, γ, φ) =

∫ ∫
p(xi|θ)p(wi|xi, γ)p(mi, ei|di,xi, φ) dxerr

i dxmis
i (1)

whereby θ refers to the parameterization of the true underlying data, γ to the error distribution, and φ

to the joint distribution of mi and ei. Using the mismeasured at random (MMAR) assumption, which

is p(mi, ei|di,xi, φ) = p(mi, ei|di, φ), (1) can be written as

p(di,mi, ei|θ, γ, φ) = p(mi, ei|di, φ)p(di|θ, γ) (2)

which is proportional to

p(di|θ, γ) =

∫ ∫
p(xi|θ)p(wi|xi, γ) dxerr

i dxmis
i . (3)

Note that from a Bayesian perspective, for a given prior on (θ, γ), this gives us a posterior distribution

for p(θ, γ|di) which makes use of only observed quantities.

3. Posterior predictive distribution of the unobserved data: To obtain valid inference with multiple impu-

tation (MI), one needs to draw from the posterior predictive distribution of the unobserved data. If

one were to omit mismeasured data and thus define xerrij = xmis
ij MI would already yield valid inference

but omit important information. Given that both missing and latent values are unobserved, draws

from the predictive posterior distribution of this unobserved data relate to:

p(xerr
i ,xmis

i ) =

∫
p(xerr

i ,xmis
i |di, θ, γ)p(θ, γ|di)dθdγ . (4)

4. Multiple imputation with EMB: To draw values from (4) one needs to (i) draw (θ(i), γ(i)) from its

posterior distribution p(θ, γ|di) and then (ii) draw (xerr
i ,xmis

i ) from p(xerr
i ,xmis

i |di, θ, γ). The EMB

algorithm utilizes this (i) by means of the EM algorithm to obtain an unbiased estimate θ̂ in the

presence of unobserved data, and (ii) by repeating this for different bootstrap samples of d. Specifically,

under the assumption of a multivariate normal distribution for the data, X ∼ N(µ,Σ), and under the

assumption of no measurement error, EMB does the following:

i) The Expectation-Maximization (EM) algorithm estimates θ = (µ,Σ) in the presence of unobserved

data. In the E(xpectation)-Step the algorithm fills in estimates for the missing values using

conditional expectations; in the M(aximazation)-Step the complete data parameters are estimated

(from the sufficient statistics) using the available and filled-in data. These two steps are repeated

until the parameter estimates converge and one obtains (µ̂, Σ̂), see Dempster et al. (1977) for the

technical details. Thus, an estimate of θ can be drawn from N(µ̂, Σ̂). This step simulates draws

from p(θ, γ|di) related to (3).

ii) The draws from N(µ̂, Σ̂) are used to obtain β̃ (an estimate of β) via the sweep operator and

impute missing values via xij = xobsi,−j β̃ + ε̃. We refer the reader to Goodnight (1979) and the

appendix of Honaker and King (2010) for the details on how µ̂ and Σ̂ relate to β̃.
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iiii) Repeating this procedure for M bootstrap samples of d yields M different imputations ade-

quately reflecting estimation uncertainty. They can be seen as draws from (4) for xerr
i = ∅.

5) Incorporating measurement error into EMB via prior distributions: To simulate proper draws from (4)

one needs to first simulate proper draws from the posterior relating to (3). Blackwell et al. (2015a)

show that under the setting of (3) the EM-algorithm needs to estimate

E(T (xi)|di, θ
(t), γ) =

∫ ∫
T (xi) p(x

err
i ,xmis

i |xobs
i , θ(t))︸ ︷︷ ︸

imputation

p(wi|xi, γ)︸ ︷︷ ︸
mismeasurement

dxerr
i dxmis

i (5)

in the E-Step. Note that θ(t) refers to the tth updated estimate of θ and T (xi) to the complete data

sufficient statistic (from which θ can be derived; under multivariate normality T (x) = X′X). Now, if

we assume a classical measurement error model we implicitly specify

wij ∼ N(xij , λ
2
ij) ∀wij ∈ wi . (6)

Putting (6) into (5) and using the normality assumptions xerr
i |xobs

i , θ ∼ N(µe|o,Σe|o), wi|xerr
i , λ2i ∼

N(xerr
i ,Λi) yields the following distribution

(xerr
i |di, θ

(t), λ2i ) ∼ N(µ∗,Σ∗) with Σ∗ = (Λ−1i + Σ−1e|o)−1, µ∗ = Σ∗(Λ−1i wi + Σ−1e|oµe|o) , (7)

as demonstrated by Blackwell et al. (2015a). Thus, to calculate the expectation on the left hand side

of (5) for each cell with error, the E-Step needs simply make use of (7). This will result in overall

proper multiple overimputations drawn from (4).

6) Implications for the Implementation with Amelia II: The standard EMB algorithm is implemented in

the R-package Amelia II (Honaker et al., 2011). It allows the incorporation of prior distribution for

single cells, i.e xij ∼ N(µij,0, κ
2
ij,0). If using µij,0 = wij and κ2ij,0 = λ2ij one obtains the same results

as in (7), see the appendix of Honaker and King (2010); and thus, using priors for mismeasured cells

which equal xij ∼ N(wij , λ
2
ij) yields draws from the modified EMB algorithm described in step 5, and

therefore proper multiple overimputations. To specify the mismeasured cells one needs the overimp

option of the function amelia, and to specify the priors for the respective cells one needs the priors

option.

7) Combining estimates after multiple overimputation: After generating M overimputed datasets by

means of multiple overimputation, the analysis model (e.g. any regression model) can be fitted on

each overimputed dataset and the M results will be combined as follows: the point estimate of θ (here

implicitly referring to the parameters in the analysis model) is

θ̂MI =
1

M

M∑
m=1

θ̂(m) (8)

where θ̂(m) refers to the estimate of θ in the mth overimputed set of data D(m), m = 1, . . . ,M . Based

on the average within imputation covariance Ŵ = M−1
∑

m Ĉov(θ̂(m)) and the between imputation

covariance B̂ = (M − 1)−1
∑

m(θ̂(m) − θ̂MI)(θ̂
(m) − θ̂MI)

′
one obtains variance estimates via

Ĉov(θ̂MI) = Ŵ +
M + 1

M
B̂ =

1

M

M∑
m=1

Ĉov(θ̂(m)) +
M + 1

M(M − 1)

M∑
m=1

(θ̂(m) − θ̂MI)(θ̂
(m) − θ̂MI)

′
(9)

To construct confidence intervals for θ̂MI in the scalar case, it may be assumed that V̂ar(θ̂MI)
− 1

2 (θ̂MI−θ)
follows a tR-distribution with approximately R = (M − 1)[1 + {MŴ/(M + 1)B̂}]2 degrees of freedom.

Instead of computing these quantities by hand the function mi.inference in the R-package norm

can be used; or, alternatively, the functionalities in the R-package Zelig or the Stata commands mi

estimate or mim can be used.
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eText 2: Simulation of viral loads and the misclassification proportion related to measurement error.

R-code:

# Generating true data

n=30000

VL <- rlnorm(n, meanlog=10.760, sdlog=1.808607)

# Generating mismeasured data

VL_measured <- 10^(log10(VL)+rnorm(n,0,0.255))

# Virological suppression if VL<1000

VL_supp <- as.numeric(VL<1000)

VL_measured_supp <- as.numeric(VL_measured<1000)

# Evaluating misclassification

VL_total <- cbind(VL_supp,VL_measured_supp)

misclass_FN <- as.numeric(VL_total[,1]==1 & VL_total[,2]==0)

misclass_FP <- as.numeric(VL_total[,1]==0 & VL_total[,2]==1)

mean(misclass_FN)+mean(misclass_FP) # overall misclassification

With z0.985 = 2.17 and a standard deviation of 0.23 one obtains about 1.5% misclassification by eval-

uating the confidence intervals related to the prior distributions used during multiple overimputation for

the mismeasured values. For example, if a patient had a virological failure (VLsupp = 0) we impose a prior

normal distribution, N(0, 0.23), on the mismeasured value which implies that the upper limit of a 98.5%

confidence interval corresponds to 0+2.17·0.23 = 0.499 and thus 1.5% of values from this normal distribution

are > 0.499 and therefore get rounded off to 1 which relates to virological failure and thus misclassification.

The motivation and more details on how to use prior normal distributions for categorical variables can be

found in Blackwell et al. (2015b) and Blackwell et al. (2015a).
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1Please note that eText1, as well as parts of the main body of the manuscript, uses terminology from a technical

report of Blackwell at el. which resulted in two publications, Blackwell et al. (2015a) and Blackwell et al. (2015b). While

the content of the publications and the content of the technical report is similar, the language used may differ. For

example, we refer to the ‘mismeasured at random’ assumption which relates to the ‘Ignorable Measurement Mechanism

Assignment (IMMA)’ assumption in Blackwell et al. (2015a).

17


	Publication_Schomaker_Epidemiology_2015
	Publication_Schomaker_Epidemiology_2015_supp



