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SUMMARY
Missing data in multiple variables is a common issue. We investigate the applicability of the framework of
graphical models for handling missing data to a complex longitudinal pharmacological study of children
with HIV treated with an efavirenz-based regimen as part of the CHAPAS-3 trial. Specifically, we examine
whether the causal effects of interest, defined through static interventions on multiple continuous variables,
can be recovered (estimated consistently) from the available data only. So far, no general algorithms
are available to decide on recoverability, and decisions have to be made on a case-by-case basis. We
emphasize the sensitivity of recoverability to even the smallest changes in the graph structure, and present
recoverability results for three plausible missingness-directed acyclic graphs (m-DAGs) in the CHAPAS-
3 study, informed by clinical knowledge. Furthermore, we propose the concept of a “closed missingness
mechanism”: if missing data are generated based on this mechanism, an available case analysis is admissible
for consistent estimation of any statistical or causal estimand, even if data are missing not at random.
Both simulations and theoretical considerations demonstrate how, in the assumed MNAR setting of our
study, a complete or available case analysis can be superior to multiple imputation, and estimation results
vary depending on the assumed missingness DAG. Our analyses demonstrate an innovative application of
missingness DAGs to complex longitudinal real-world data, while highlighting the sensitivity of the results
with respect to the assumed causal model.

KEYWORDS: causal effect; longitudinal study; missing data; missingness DAG; multiple imputation.

1. IN TRODUCTION
Missing data are a common issue in biomedical research. In particular, longitudinal epidemiological
studies, where data are collected consecutively at several points in time, tend to suffer from missing
data on multiple variables. One common assumption which is often made regarding the missing
data mechanism is the so-called missing at random (MAR) assumption. If this assumption holds,
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statistical methods for consistent estimation are available, for example, multiple imputation or
inverse probability weighting (Rubin 1976; Mohan and Pearl 2014).

However, if multiple variables are missing simultaneously, it is often difficult to justify whether
the MAR assumption holds. This is both because the classic MAR definition is event- rather
than variable-based, and arguing for or against conditional independencies of events is practically
challenging, especially in longitudinal settings (Mohan and Pearl 2021). Moreover, even though
MAR is the weakest known condition under which the missingness process can be ignored (i.e.
dealt with using the observed data), it is only a sufficient, but not a necessary condition for unbiased
estimation; this means that under a missing not at random (MNAR) scenario, it is unclear if and how
a target estimand can be recovered (estimated consistently).

To tackle these and other challenges, Mohan et al. (2013) and Mohan and Pearl (2021) proposed
an alternative causal graph-based framework, in which knowledge and assumptions about reasons
for missingness are encoded in relationships between variables and missing data indicators. This
framework is very general and can be used to evaluate whether estimands can be recovered given a
correct causal missingness model (missingness-directed acyclic graph, m-DAG).

However, currently there is no general algorithm that can be used to establish recoverability for
arbitrary settings. Therefore, identification and estimation strategies have to be developed on a case-
by-case basis for each particular scenario. This poses the question of how useful causal m-DAGs are
practically.

Moreno-Betancur et al. (2018) have convincingly argued that one should thus develop canonical
m-DAGs for recurring settings, such as for point-exposure study designs in epidemiology where
missing data in outcome, exposure, and confounders are caused by some “standard” mechanisms.
They demonstrated the usefulness of this approach in a study investigating the relationship between
maternal mental illness and child behavior.

While causal missingness graphs, and their canonical versions, are a major advancement for
causal inference research under missing data, their actual applicability has yet to be demonstrated
in complex longitudinal studies. It is unclear how well knowledge on missing data can actually be
collected, then integrated in a realistic causal graph, and how difficult the mathematical exercise of
establishing identification and recoverability results in such a complex, yet realistic setting is. Can
m-DAGs make their way from blackboards to actual applications?

Recent work, such as by Balzer et al. (2021) and Nugent et al. (2024), has advanced the field
by using causal graphs and corresponding estimators to address recoverability and estimation
of causal effects in longitudinal settings subject to complex missingness and dependence. These
studies focus on reducing bias and improving efficiency by controlling for missing outcomes when
estimating intervention effects. Their frameworks, both relying on a Two-Stage TMLE approach,
are particularly useful for handling data in complex cluster randomized trial settings.

In this work, we focus on the explicit modeling of the missingness mechanism, not only for the
outcome but for all relevant variables in the study. This involves developing a causal missingness
model, explaining its motivation through a variable-based taxonomy, and then demonstrating
whether identification is possible and what estimation strategies could be employed. We present
an innovative application of missingness DAGs to a longitudinal study. Specifically, we investigate
whether the derivation of identification results in a longitudinal setting is feasible, how volatile those
results are, and how complex deriving those results can be.

In addition, we conduct simulation studies aligned with the data example to, firstly, verify the
theoretical results on the recoverability of the desired causal query, and secondly, to quantify
the extent of bias in settings of special interest. Our simulations and theoretical considerations
demonstrate that causal diagrams help to explicitly guide the process of decision-making about
whether a parameter of interest can be consistently estimated from the available data. In practice,
MAR is often assumed and multiple imputation is performed, which in many cases may lead to
biased estimation results. On the other hand, we demonstrate that even in complex longitudinal
study settings, there are MNAR scenarios for which available case analysis leads to valid estimation
results, whereas multiple imputation does not.
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We sought to answer these questions by applying the framework proposed by Mohan and Pearl
(2021) to answer a topical question in HIV-related pharmacoepidemiology, which is explained
below in Section 2. We (i) investigate how clinical knowledge on reasons for our missing data can
be best collected and integrated into a realistic causal missingness graph, (ii) derive recoverability
results for our target estimand, (iii) discuss estimation strategies for it, (iv) evaluate the sensitivity
of our results with respect to the assumed causal model, and (v) seek for structures that may be
helpful in establishing results for future studies.

This paper is structured as follows. We introduce the motivating question in Section 2, followed
by the theoretical framework in Section 3. In Section 4, analyze the data from the complex
longitudinal pharmacological study CHAPAS-3, followed by the simulation study in Section 5. We
conclude in Section 6.

2. MOTIVATING ST UDY
Our motivating data analysis comes from the Children with HIV in Africa–Pharmacokinetics and
Adherence/Acceptability of Simple antiretroviral regimens randomized trial (CHAPAS-3). The
study enrolled 478 children with HIV, between 1 mo and 13 yrs of age, in 4 sites in Uganda and
Zambia (Mulenga et al. 2016). Children enrolled into the trial received combined antiretroviral
therapy, i.e. one non-nucleoside reverse transcriptase inhibitor (efavirenz or nevirapine) and two
nucleoside reverse transcriptase inhibitors (abacavir, stavudine, or zidovudine—which were the
randomized components– and lamivudine).

We are interested in determining target concentrations using data from 125 children treated with
efavirenz (EFV). Efavirenz is used not only in children but also adults, though dosing recommen-
dations (between 200 and 600 mg) depend on weight and age. Due to their different metabolic
profiles and adherence patterns, patients with the same efavirenz dose may have different concen-
trations, conferring different protection against viral replication. Knowledge about concentrations
is often used to derive dosing recommendations using population PK models (Bienczak et al. 2016).
It is typically recommended that EFV concentrations between 1 and 4 mg/L should be achieved
(at 12h after the dose was given, C12h). This is because lower concentrations may be insufficient
to guarantee viral suppression and thus effective treatment, while higher concentrations may lead
to toxicity negatively affecting the central nervous system (Schomaker et al. 2024). Our target
estimand is thus the causal concentration-response curve (CCRC) at each follow-up visit, i.e. we are
interested in how the counterfactual probability of viral failure at time t varies as a function of possible
prior concentration trajectories.

Our analysis makes use of the data from Bienczak et al. (2016). We recently discussed statistical
approaches on estimating the CCRC (Schomaker et al. 2023), but did not discuss aspects of miss-
ing data. In this manuscript, we extend the above study by developing a causal missingness graph
(informed by the pediatrician’s and trial team’s knowledge) and derive identification and estimation
approaches for our estimand of interest. More details on the analysis are given in Section 4.

3. FR A M E WOR K
Missingness DAGs provide a natural extension of causal DAGs under the presence of missing data.
Consider a DAG G = (V, E) with a set of nodes V, |V| = n, which can be separated into two subsets
Vo and Vm, corresponding to sets of completely observed and partially observed variables. For each
variable Xi, i ∈ {1, ..., n}, from the subset Vm, a binary missingness indicator variable MXi

MXi =
{

1 if Xi is missing,
0 otherwise

is introduced in the missingness DAG to depict causal relationships with other relevant variables.
In the following, we refer to the set of missingness indicator variables as M. In addition, the setup
allows for the existence of a latent (unmeasured) variable set U.
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In this work, we make use of the framework introduced by Mohan and Pearl (2021). We define
Gc as the complete-DAG (c-DAG) (as in Moreno-Betancur et al. (2018)), and G as the missingness
DAG (m-DAG). The c-DAG Gc includes only the variable set V := Vo ∪ Vm ∪ U that is relevant
for identification considerations with respect to the (causal) parameter of interest (assuming no
missingness in the variables in Vm). The m-DAG G, however, also includes the set of missingness
indicators M, and may additionally consist of a set of auxiliary variables, denoted as Z, with variables
in Z causing missingness in the variables in Vm, but not being a cause of the variables from the set
V. Note that variables from both V and Z may be a cause of missingness in the variables from Vm.

Mohan et al. (2013) and Mohan and Pearl (2021) show that causal diagrams can be used as a
powerful tool for the identification and classification of missingness mechanisms. It is an important
finding that the conventional taxonomy of missing data (Rubin 1976) can be translated (with some
minor changes) into the context of causal diagrams, which is the focus of this work. However, it
is essential to mention that the missingness taxonomy definitions proposed by Rubin (1976) and
Mohan et al. (2013) are, in general, not equivalent. Note that Rubin’s framework of missing data is
defined on the record-based level, which makes it particularly difficult to apply in practice. Another
issue that is often ignored is that the “realized” MAR definition as proposed by Rubin (1976) is not
required to hold for all possible values of the missingness indicator M, but only for those present
in the data. This makes clear that such a kind of definition does not hold for a data-generating
distribution in general, but only for a single data sample, as different missing data patterns may arise
for samples resulting from re-running of the experiment (Schafer and Graham 2002; Tian 2015). To
overcome this issue, Seaman et al. (2013) distinguishes between two types of MAR—realized MAR
and everywhere MAR. The latter is a “stronger” definition in the sense that conditional missingness
distribution relates to the missing entries for all realized and unrealized patterns of missing data,
and not only to the one specific data sample which has been observed.

Mohan et al. (2013) propose an alternative framework of missing data taxonomy, which is
based on graphical models. The two main advantages of the graph-based method are an explicit
encoding of dependencies on the variable level (and not record-based), and also depiction of causal
mechanisms which are causing missingness (Tian 2015). Note that m-DAGs represent both the
data-generating mechanism and the missing data mechanism, both in a causal manner.

Let G be an m-DAG over a set of variables Vo ∪ Vm ∪ U ∪ M, where Vo and Vm denote the sets of
completely and partially observed variables, correspondingly, U is a set of latent (unobserved) vari-
ables, and M is the set of missingness indicators. We denote the corresponding (joint) data distri-
bution as P(Vo, Vm, U, M), and assume the distribution to be faithful (Pearl and Verma 1990) with
respect to G. Broadly speaking, faithfulness requires that the joint distribution P(Vo, Vm, U, M)

satisfies all the conditional independence relationships encoded by the DAG, and only those
relationships. In other words, one assumes that all observed conditional independencies follow
from the graphical structure, and not from other reasons (such as deterministic relationships
between variables).

The missingness mechanism is commonly characterized in terms of the conditional distribution
of M given (Vo, Vm, U), say p(M|Vo, Vm, U). It has to be assumed that any missingness indicator
from the set M is not a parent of any variable from Vo ∪ Vm ∪ U. We emphasize once more that
in the graph-based missing data framework, we work with variable-based and not the record-based
definitions of the missingness mechanisms.

1. Missing completely at random (MCAR). If missingness occurs randomly and is assumed
not to be caused by any variable in the model, missing or observed, we write

p(M|Vo, Vm, U) = p(M),

which means that the conditional distribution of the missingness mechanisms given the vari-
ables in the data set and, possibly, also the latent variables, is equal to the marginal distribution
of the missingness mechanism. This corresponds to the (unconditional) independence
statement (Vo, Vm, U) ⊥⊥ M.
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(a) (b) (c) (d)

Figure 1: Example m-DAGs depicting three different types of missingness mechanisms: (a) MCAR,
(b) MAR, (c) MNAR, (d) MNAR. Variables A and X are fully observed and variable Y is partially
observed. We assume Y to be the disease indicator, A the type of treatment, and X the patient age.
MY is the missingness indicator for the outcome Y .

In terms of an m-DAG, if the joint distribution p(Vo, Vm, U, M) is faithful with respect to
the graph G, this means that there are no edges between the M variables and variables in Vo
and Vm, and parents of missingness indicator variables from M can only be other variables
from M.

A commonly used example of the MCAR mechanism is an accidental technical error in an
electronic medical record, which leads to a loss of data on the disease indicator, compare with
Fig. 1a.

2. Missing at random (MAR). In this case, the missingness mechanism is assumed to depend
on the fully observed variables only, but is not allowed to depend on the missing data values
or latent variables. In terms of the conditional distribution of M, this corresponds to

p(M|Vo, Vm, U) = p(M|Vo).

The conditional independence statement that holds in this case is (Vm, U) ⊥⊥ M|Vo,
which in terms of m-DAGs (if the joint distribution is faithful to G) means that variables
from M are not allowed to have any parents from the sets Vm or U, but only from Vo and other M
variables.

For example, if a disease indicator is missing for some patients, and missingness for some
reason depends on the completely observed treatment only, one says that the missing data
underlies the MAR mechanism, as depicted in the example in Fig. 1b.

3. Missing not at random (MNAR). This category of missingness is most general. Data that
cannot be classified as MCAR or MAR fall in the MNAR category. In this case, the conditional
distribution of M, p(M|Vo, Vm, U), cannot be simplified. In an m-DAG (again, assuming
faithfulness), if at least one M variable has a parent which is a latent variable U or is any of the
partially observed variables from the set Vm, then the missing data mechanism is MNAR.

A common example of MNAR is when a variable is causing its own missingness, e.g. if
the missingness of the disease status entry depends on the disease status itself, as this is the
case for the m-DAG in Fig. 1c. For instance, the presence of a disease is likely to increase the
chances of disease status being recorded due to the associated medical follow-ups and tests.

Another practically very relevant example is presented in Fig. 1d. It shows a case where
missingness is driven by latent variables, which may potentially also be a cause for an observed
variable. For example, socio-economic status (SES) may not be recorded in a medical study,
but has an impact on both the missingness in the disease indicator due to reduced healthcare
visits and the type of treatment an individual receives, since those with higher SES may have
access to better healthcare facilities and more advanced treatment options.

Note that both missing data taxonomies are equivalent if (i) observations are independent,
and (ii) missingness indicators are conditionally independent (Schomaker 2020). In this case,
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the conditional distribution from the graph-based MAR definition can be written as a product of
conditional distributions for single missingness indicators as well as for single observations, and this
then leads to the equivalence of both definitions.

3.1. Recoverability of target quantities
In general, recoverability is a property of the target quantity/parameter θ (and the probability
distribution PX) which states whether this quantity can be estimated consistently from the available
data. To decide on recoverability, one needs to know the independence statements that hold in the
joint distribution. However, under the Markovness and faithfulness assumptions, all conditional
independence statements present in the data can be directly read off from the m-DAG G, and
recoverability can therefore be considered as a property of the pair {θ , G} (Mohan and Pearl 2021).
Note that the term identifiability is used when assessing whether a causal query can be expressed as
a function of the observational distribution, whereas the recoverability concept is used to describe
whether a parameter (not necessarily in a causal context) can be expressed as a function of the
available data distribution (Moreno-Betancur et al. 2018).

Moreno-Betancur et al. (2018) describe three main conditions required for recoverability of a
target parameter θ : consistency and well-defined interventions, positivity, and conditional inde-
pendence conditions. In this context, consistency is a property of central relevance. It says that the
factual treatment value coincides with the counterfactual outcome.

It has to be emphasized that many types of target parameters θ may be of interest, and differ-
ent missingness patterns may occur, which makes it impossible to derive a general automatized
algorithm allowing a decision about the recoverability of any specific θ . Therefore, the authors
work on “canonical” scenarios which are most typical for epidemiological studies. Mohan et al.
(2013) and Mohan and Pearl (2021) present some theoretical results on recoverability of joint
and conditional distributions. In this work, we only briefly provide intuition on how recoverability
works, focusing on aspects that are relevant for our own identification strategies. The main goal is to
exploit conditional independencies between the variables of interest and the missingness indicators
(which can be read off from the d-separation statements that hold in the graphs) in order to be able
to condition on the missingness indicator variables (i.e. on Mi = 0 for some i). This way, observed
variable values will be sufficient for consistent estimation of the target quantity.

In the following, we focus on the recoverability of causal effects. Indeed, necessary and sufficient
conditions exist for recoverability of causal effects (Mohan and Pearl 2021). Under the presence
of missing data, a necessary condition for recoverability of a causal effect is the identifiability of this
effect from the c-DAG of interest. The causal effect is identifiable from a graph G if the interventional
distribution can be determined uniquely from the observed-data distribution alone (Tian and Pearl
2002; Pearl 2009). Shpitser and Pearl (2006) provide a sound and complete algorithm for condi-
tional causal effect identification (IDC), which, for any causal effect, can be used for determining
identifiability and also for generation of an expression for the interventional distribution in the
case of an identifiable effect. Tikka and Karvanen (2017) implemented the IDC algorithm in the
R-package causaleffect. Using the IDC algorithm, we get an estimand of the causal query
whenever identifiability holds for the causal effect. In turn, a sufficient condition for recoverability is
that the (identified) estimand is recoverable from the missingness graph. This, as mentioned before,
has to be decided on a case-by-case basis.

Next, an example of recoverability procedure of a causal effect for a simple longitudinal study with
two measurement points is presented. The example is inspired by Mohan and Pearl (2021, Section
3.5). Consider the m-DAG in Fig. 2, which is a model of a simple two-time-point longitudinal
study with attrition. The variables A1 and A2 correspond to sequential treatment, X1 and X2
are the side effects, and Y1 and Y2 model some health outcomes. The causal effect of interest is
P(Y2; do(A1, A2)), which is the impact of the two sequential treatments on the outcome at the
second study time point. We can see that the partially observed variables X1 and X2 are causing their
own missingness, which means that the missingness mechanism is of the MNAR type. However,
even in this case, it can be shown that the causal effect of interest is recoverable using sequential
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Figure 2: An m-DAG depicting the MNAR missingness mechanism in a simple longitudinal study.
Health outcomes at two study time points are denoted as Y1 and Y2, sequential treatment variables
as A1 and A2, and side effects as X1 and X2.

factorization (Mohan and Pearl 2021). First, with the help of the IDC algorithm, an expression for
identifying the causal effect from the observable data is provided (for the case as if there had been
no missingness, which is indicated in terms of potential outcomes):

P(YM=0
2 ; do(A1, A2)) =

∑
Y1

P(YM=0
2 |A1, A2, YM=0

1 ) × P(YM=0
1 |A1).

Note that the potential outcome notation (·)M=0 is explicitly used only for the variables observed
incompletely. In the next step, it has to be decided on the recoverability of the two conditional
distributions P(YM=0

2 |A1, A2, YM=0
1 ) and P(YM=0

1 |A1).

P(YM=0
2 |A1, A2, YM=0

1 ) = P(YM=0
2 |A1, A2, YM=0

1 , MY1 = 0, MY2 = 0) (Y2 ⊥⊥ {MY1 , MY2 }|A1, A2, Y1)

= P(Y2|A1, A2, Y1, MY1 = 0, MY2 = 0) (by consistency)

P(YM=0
1 |A1) = P(YM=0

1 |A1, MY1 = 0) (Y1 ⊥⊥ MY1 |A1)

= P(Y1|A1, MY1 = 0) (by consistency)

Formally, it is true that {A1, A2, Y1} is the minimal set for which

Y2 ⊥⊥ {X1, X2}|A1, A2, Y1.

Analogously, A1 is the minimal set for which holds

Y1 ⊥⊥ X1|A1.

Further, P(Y2|A1, A2, Y1) satisfies Y2 ⊥⊥ {MY1 , MY2}|A1, A2, Y1, whereas for P(Y1|A1) it holds that
true Y1 ⊥⊥ MY1 |A1. Then, applying the sequential factorization technique, both factors can be
recovered as P(Y2|A1, A2, Y1, MY1 = 0, MY2 = 0) and P(Y1|A1, MY1 = 0), correspondingly.

This shows that the causal effect of interest can be recovered from the available data only, despite
the fact that the underlying missingness mechanism is MNAR.

After a causal effect of interest has been identified as a function of the observed data, (and after it
has been further ensured that and how it can be recovered in the presence of missing data), the causal

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxae044/7902044 by guest on 26 D

ecem
ber 2024



8 · Holovchak et al.

effect can be estimated using the common techniques, e.g. (parametric) G-computation (Robins
1986), inverse probability weighting (Hernán and Robins 2006; Hernan and Robins 2020b), or
targeted maximum likelihood estimation (TMLE) (van der Laan and Rose 2011).

3.2. Closed missingness mechanism
Next, an interesting special case of a missingness mechanism, which we refer to as closed missingness
mechanism, is discussed. We present the recoverability results for joint and conditional distributions
under the closed missingness mechanism.

Definition 1 (Closed missingness) Consider a c-DAG Gc with the node set
V = {X1, X2, ..., Xn}, |V| = n. Without loss of generality, assume that Vo = {X1, ..., Xk} and
Vm = {Xk+1, ..., Xn} for some k ≤ n. The corresponding m-DAG consists of the set V, the
missingness indicator variable set M = {MXk+1 , ..., MXn}, and possibly a variable set Z
containing auxiliary variables that are causes of missingness. The missingness mechanism
is called closed if there is no path between any Vi ∈ V and any MVi ∈ M, i ∈ {k + 1, ..., n}.

In other words, the missingness mechanism is closed if only the auxiliary variables from Z are
causes of missingness. From a practical standpoint, this type of missingness mechanism is common
in clinical, epidemiological, and pharmacological studies. The variables of interest in these studies
are often of biological and medical nature (e.g. medication/therapy type, medication dose, blood
values), whereas the causes of missingness in such variables are typically related to external factors
such as technical issues with medical devices and the socioeconomic status of study participants.

Corollary 1 Consider an m-DAG G depicting a closed missing mechanism, and the general
setting as in Definition 1. The joint distribution P(Vo, Vm), and therefore also any
marginal or conditional distribution, is recoverable from the available cases.

Proof. As there is no path between any Vi ∈ V, i ∈ {1, ..., n}, and any MVi ∈ M, i ∈ {k + 1, ..., n},
Vi and MVi are d-separated for any i without conditioning on any other variables, and therefore
Vi ⊥⊥ MVi holds true.

Note that the variables from Z may also be completely and incompletely observed, or even
unobserved or latent, but this plays no role for the variables of interest from the set V.

The concept of a “closed missingness mechanism” can lead to a useful practical rule of thumb,
especially under MNAR. If a researcher determines that missingness is likely caused by unmeasured
factors, they may initially conclude that the data are MNAR, making both imputation and available
case analyses invalid. However, by sketching a c-DAG and m-DAG (incorporating missingness
indicators), if no arrows are found from the c-DAG to the m-DAG, they can conclude that an
available or complete case analysis is valid, despite MNAR. Intuitively, if the causes of missing
values are unrelated to the variables necessary for identification, then relying solely on complete
cases might be preferable to imputation.

This approach underscores a crucial practical insight: even in the presence of MNAR, if the
missingness mechanism is closed, it does not impact the validity of complete case analysis. Thus,
researchers can confidently use complete case data when the missingness indicators are isolated
from the primary variables of interest.

4. DATA A N A LYSI S
4.1. Study setting, measurements, and estimand

As described in Section 2, our data comes from the study of Bienczak et al. (2016) and includes 125
children with HIV who were enrolled in the CHAPAS-3 trial and treated with an efavirenz-based
regimen. We consider the trial’s follow-up visits at 6, 36, 48, 60, and 84 wks.
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Our scientific goal is to estimate causal concentration response-curves. That is, we are interested
in the counterfactual probability of a viral load (VL) > 100 copies/ml (which is considered to
be a viral failure) at 36 and 84 wks if children had efavirenz concentrations (12h after dose) of x
mg/L at each follow-up visit, where x ranges from 0 to 10 mg/L. Missing data in the outcome (VL),
efavirenz exposure (EFV) and time-dependent confounders (weight, adherence) complicates this
exercise.

Measured baseline variables include sex, age, the nucleoside reverse transcriptase inhibitors drug
(NRTI) component of the treatment regimen and weight. Moreover, we include knowledge on
the metabolism status (“genotype,” slow, intermediate, extensive) related to the single nucleotide
polymorphisms in the CYP2B6 gene, which is relevant for metabolizing evafirenz and directly
affects its concentration in the body. In addition available data include knowledge on caregiver’s
beliefs in the necessity of medicine (BMQ, Abongomera et al. 2017), as well as socio-economic
indicators (SES). Measured follow-up variables are weight, adherence (measured through memory
caps, MEMS), and dose.

Clinical assessments were made at every visit, viral loads were measured at all time points except
week 6, efavirenz levels were measured at all assessments other than week 48, and assessment
of adherence through MEMS primarily at weeks 36, 48, and 60 as both funding constraints and
practical considerations did not allow its consecutive implementation.

4.2. Development of the causal model
Figure 3 contains our proposed causal model. The causal graph contains (i) variables important
for identifying the effect of interest (i.e. the impact of EFV on viral failure, c-DAG, bottom).
We summarized (ii) clinician’s knowledge on why data are possibly missing in a m-DAG using
binary missingness indicators (top, pink shading) for relevant variables with missing data (EFV, ele-
vated viral load (VL), adherence (MEMS), weight). The corresponding non-parametric structural
equation models are given in Appendix A.

4.2.1. c-DAG
The c-DAG summarizes our knowledge and assumptions, described in more detail in
Schomaker et al. (2023). Briefly, the primary cause of viral failure is subtherapeutic efavirenz
concentration (EFVt → VLt). The concentration itself depends on the administered dose
(Doset → EFVt), adherence to treatment (MEMSt → EFVt) and how fast the drug is cleared,
determined—amongst other—by the 516G and 983T polymorphisms in the CYP2B6 gene
(Genotype → EFVt). Both weight and MEMS are assumed to be time-dependent confounders.
Co-morbidities (CoMo), which we defined to include tuberculosis, pneumonia and other AIDS-
defining events are reflected in the DAG, although they are expected to be less frequent in our
population, as children with active infections, those being treated for tuberculosis and with severe
laboratory abnormalities at screening, were not enrolled into the study, and most children were in
relatively good health (e.g. median CD4 cell percentage is 19%).

4.2.2. m-DAG
Main m-DAG (Gmain): The development of the missingness causal model is a novel contribution of
our paper. Reasons for missing data were obtained from the trial team and the pediatricians. Those
reasons are represented by arrows leading into the missingness indicators and include (i) technical
issues with the memory caps (e.g. broken containers) or in obtaining or analyzing a blood sample
(TI, unmeasured); (ii) missed visits (MV), which are likely related to socio-economic status of
caregivers (SES, measured), beliefs and attitudes toward medicine (BMQ, measured) and other
behavioral factors (BHV, unmeasured). As almost all children depend on their caregiver to arrive
at their appointment, we assume that the children’s age does not affect the probability of a missed
visit.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxae044/7902044 by guest on 26 D

ecem
ber 2024



10 · Holovchak et al.

Sensitivity of the main causal missingness model (Galt1): Although the clinicians did not
report any other possible reasons for missingness, we added another speculative reason for missed
visits to explore the implications of deviations from the assumed causal model: health status of the
child, captured indirectly through elevated viral load. This potential reason is represented by the
blue dashed arrows in the m-DAG (Galt1). In the discussion, we also mention another m-DAG
(Galt2), where Gmain is extended with additional arrows SES → MEMSt , t ∈ {6, 36, 48, 60, 84}.

Following the introduced notations, and under the assumption of Gmain or Galt1, the sets of
completely and partially observed variables, auxiliary variables, and missingness indicators are
defined as follows:

• Vo = {Age, Genotype, Sex, NRTI, CoMot , Doset}
• Vm = {MEMSt , Weightt , EFVt , VLt}
• M = {MVLt , MWeightt , MEFVt , MMEMSt }
• Z = {TIt , MVt , BMQ , SES, BHV}.

Note that under Galt2 (Gmain with additional arrows SES → MEMSt), BHV becomes a part of the
c-DAG.

4.3. Identifiability and recoverability of causal effects
To make a decision on the recoverability of a causal query of interest, we first need to find out
whether the query is identifiable or not. Provided the identifiability holds true, the main idea of
recoverability is to transform the partially observed variables from the identified expression into
observables with the help of d-separation statements resulting from the m-DAG.

In this work, we aim to estimate the causal impact of the efavirenz drug concentration in the
plasma of children with HIV, measured and controlled over a specific time period, on viral failure.

Particularly, we focus on two causal effects,

θ36 := P(VL36 = 1; do(EFV6 := a, EFV36 := a)) (1)

and

θ84 := P(VL84 = 1; do(EFV6 := a, EFV36 := a, EFV48 := a, EFV60 := a, EFV84 := a)), (2)

corresponding to the probability of viral failure after 36 and 84 wks under a fixed intervention on
the plasma concentration of efavirenz drug at each previous up to current study time point. Note
that for assessment of recoverability of the causal effects, only variables from the previous up to
current study time point are considered, and we therefore focus on the corresponding subgraph of
the “full” m-DAG in Fig. 3 containing the variables up to and including the 36th study week when
deciding about identifiability and recoverability of θ36.

We first consider the m-DAG Gmain from Fig. 3, ignoring the dashed blue lines from VLt to
MVt , t ∈ {0, 6, 36, 48, 60, 84}. Note that according to the taxonomy of the missingness mech-
anisms proposed by Mohan et al. (2013), the missingness is of MNAR type because TIt , t ∈
{0, 6, 36, 48, 60, 84}, are unobserved variables directly causing missingness. Under Rubin’s defini-
tion the data would also be MNAR because units may exhibit missing values due to unmeasured
behavioral factors (BHV).

In the first step, we have to work on identifiability of the causal effect of interest. We carry this
out through two approaches. Our first proposal is the application of the IDC algorithm. Applying
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Figure 3: m-DAG. Dashed arrows distinguish between Gmain (no dashed arrows) and Galt1 (dashed
arrows). The subgraph below the dashed line represents the corresponding c-DAG. Unmeasured
variables are slightly shaded. Variable names: Sex: biological sex, Weight: body weight, Age: age
(in yrs), VL: elevated viral load, Dose: efavirenz dose administered, EFV: efavirenz concentration
(12h after dose), NRTI: nucleoside reverse transcriptase inhibitors drug, Genotype: metabolism
status, MEMS: adherence to treatment (measured through memory caps), CoMo: co-morbidities,
MV: missed hospital visit, TI: technical issues (e.g. with blood samples or memory caps), BMQ:
beliefs and attitudes toward medicine, SES: socio-economic status of caregiver, BHV: behavioral
factors.

rules of do-calculus therefore leads to the causal effect identifiable in terms of the observed data
distribution as if there were no missingness in any variable relevant for identification:

θ36 =
∑

Age, Sex, CoMo0, Weight0,
VL0, CoMo6, VL6

P(VL36 = 1|Age, Sex, CoMo0, Weight0, Genotype, MEMS6, Weight6, Dose6,

EFV6 = a, VL0, CoMo6, VL6, MEMS36, Weight36, Dose36, EFV36 = a)

P(VL6|Age, Sex, CoMo0, Weight0, Genotype, MEMS6, Weight6,

Dose6, EFV6 = a, VL0)

P(CoMo6|Age, Sex, CoMo0, Weight0, Genotype, VL0)

P(Weight0|Age, Sex)P(CoMo0|Age, Sex)

P(Sex)P(Age)P(VL0).
(3)

The corresponding identifiability result for θ84 based on IDC algorithm is in Appendix B.1.
There may be other identifiability results, based on different factorizations. For example, in

our second proposal, we apply Pearl’s (generalized) back door-criterion to determine a sufficient
adjustment set and then simply apply Robins’ g-formula factorization to it. Such a factorization may
involve more conditional distributions that have to be estimated compared to the first approach.
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For the above estimand, θ36, a valid factorization would be as follows (see, e.g. Hernán and Robins
(2020a, Chapters 19 and 21)):

θ36 =
∑

Age, Genotype, Sex, NRTI, Weight0,VL0
Weight6, MEMS6, Weight36, MEMS36

P(VL36 = 1|EFV6 = a, EFV36 = a, Age, Genotype, Sex, NRTI,

Weight0, Weight6, MEMS6, Weight36, MEMS36, VL0, VL6)

P(Weight36|EFV6 = a, Age, Genotype, Sex, NRTI,

VL0, VL6, Weight0, Weight6, MEMS6)

P(MEMS36|EFV6 = a, Age, Genotype, Sex, NRTI,

VL0, VL6, Weight0, Weight6, MEMS6)

P(VL6|EFV6 = a, Age, Genotype, Sex, NRTI, VL0, Weight0)

P(Weight6, MEMS6, Age, Genotype, Sex, NRTI, VL0, Weight0)

(4)

This is because neither the dose nor co-morbidities variables are necessarily required to block
the relevant back-door paths from EFVt to VLt∗ , t∗ ≥ t, i.e. those back-door paths that do not go
through any future concentrations.

Note that the identified expressions for θ36 and θ84 are identical under Gmain and Galt1 be-
cause the c-DAG is identical in both situations. Under assumption of Galt2, the c-DAG changes
by addition of the variable BHV , resulting in a slight change of the identified expression (see
Appendix C.2).

In the second step, we need to decide on the recoverability of the identified expression in terms
of the observed data. Note that the missingness mechanism depicted in Gmain refers to the closed
missingness mechanism introduced in the previous section. In this case, there is no path between any
variable from the c-DAG containing the variables of interest and the set of missingness indicators
M and their causes. Therefore, both causal effects are recoverable, and an available case analysis
is admissible in this situation. In order to provide a better intuition about how to decide on
the recoverability of a causal effect, we present the recoverability result for θ36 in Appendix C.1,
implicitly referring to a situation for which no recoverability result exists, and it has to be decided
on recoverability manually.

If the m-DAG Gmain reflects relationships in the data correctly, then an available case analysis
is sufficient for estimating the causal effects of interest consistently. However, it is also necessary
to assess the plausibility of the graph structure assumption. A suggestion would be to perform
a sensitivity analysis to investigate the recoverability of the causal effects θ36 and θ84 under the
assumption of an alternative m-DAG which is eligible in terms of content. Therefore, we consider
another m-DAG, Galt1, which is depicted in Fig. 3 when including the dashed blue lines from VLt
to MVt , t ∈ {0, 6, 36, 48, 60, 84}. The arrows from VLt (binary variable elevated viral load) to MVt
(binary variable missed visit) for the respective measurement time point reflect the speculation that
children with viral failure may miss their appointments due to their poor health condition.

We first investigate the recoverability of θ36 under the assumption of Galt1 being the true
underlying m-DAG. Note that if at least one of the conditional distributions in Equation 3 is
non-recoverable, we conclude the non-recoverability of the causal query of interest.

We first focus on the second last conditional distribution in Equation 3 which involves the
partially observed data, P(VL6|EFV6 = a, Age, Genotype, Sex, NRTI, VL0, Weight0), and the goal is
to condition on MWeight0 = 0, MVL0 = 0, MEFV6 = 0 and MVL6 = 0. From the m-DAG (assuming
faithfulness), we know that VL6 ⊥⊥ (MWeight0 , MVL0 , MEFV6 , MVL6)|(MV0, MV6) (and we always
need to condition on (at least) MV0 and MV6 to achieve (conditional) independence), which in
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turn leads to

P(VLM=0
6 |EFVM=0

6 = a, Age, Genotype, Sex, NRTI, VLM=0
0 , WeightM=0

0 )

=
∑

MV0, MV6

P(VLM=0
6 |EFVM=0

6 = a, Age, Genotype, Sex, NRTI, VLM=0
0 , WeightM=0

0 )×

P(MV0, MV6|EFVM=0
6 = a, Age, Genotype, Sex, NRTI, VLM=0

0 , WeightM=0
0 )

=
∑

MV0, MV6

P(VLM=0
6 |EFVM=0

6 = a, Age, Genotype, Sex, NRTI, VLM=0
0 , WeightM=0

0 ,

MWeight0 = 0, MVL0 = 0, MEFV6 = 0, MVL6 = 0)×
P(MV0, MV6|EFV6 = aM=0, Age, Genotype, Sex, NRTI, VLM=0

0 , WeightM=0
0 )

=
∑

MV0, MV6

P(VL6|EFV6 = a, Age, Genotype, Sex, NRTI, VL0, Weight0,

MWeight0 = 0, MVL0 = 0, MEFV6 = 0, MVL6 = 0)×
P(MV0, MV6|EFV6 = aM=0, Age, Genotype, Sex, NRTI, VLM=0

0 , WeightM=0
0 ).

The second factor in the expression above,

P(MV0, MV6|EFVM=0
6 = a, Age, Genotype, Sex, NRTI, VLM=0

0 , WeightM=0
0 ),

cannot be further decomposed following the adjustment formula, as among others we would need
MV6 to be conditionally independent of MEFV6 (possibly given some other variables), but there is
no such subset because MV6 is a parent of MEFV6 .

Because other available recoverability techniques, like sequential factorization or R factoriza-
tion (Mohan and Pearl 2021), are not applicable in our case, we conclude that the conditional
distribution cannot be expressed in terms of the observed data distribution only; this results in
non-recoverability of θ36. Based on the same arguments, non-recoverability of θ84 also follows.

4.4. Analysis
The analysis is conducted using the m-DAG Gmain from Fig. 3 and the study data described in
Section 4.1. The plug-in g-formula estimation [see, e.g. Hernan and Robins (Hernán and Robins
2020a, Chapter 13)] of our estimands 1 and 2 was based on equations 4 and 6, respectively. Given
the recoverability under Gmain, we conduct the analysis based on available cases. For modeling the
respective conditional distributions, between 69 and 85 complete observations are available.

Note that in our setting, relevant co-morbidities in the DAG refer to AIDS-defining events,
including tuberculosis, persistent diarrhea, malnutrition, and severe wasting, among others. Most
of those events were not measured regularly in our study and thus were not included in the analysis.
However, those co-morbidities are not expected to be very frequent in the study population. This
is because children with active infections, those being treated for tuberculosis and with severe
laboratory abnormalities at screening, were not enrolled into the study, and most children were
in relatively good health (Mulenga et al. 2016). Also, not all valid identification formulae require
information on them, such as those used in our analysis. As adherence could not be measured reg-
ularly, as explained in Section 4.1, we constructed a variable indicating any signs of non-adherence,
defined as the mean memory caps opening percentage being less than 90%.

Although the main analysis was based on available cases due to the identification results, we also
implemented a multiple imputation analysis. We consider the results of the multiple imputation
analysis invalid because the underlying missingness mechanism is assumed to be MNAR. This is

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxae044/7902044 by guest on 26 D

ecem
ber 2024



14 · Holovchak et al.

(a) (b)

Figure 4: Estimated CCRCs for θ36 and θ84 under m-DAG Gmain. (a) Estimated CCRCs for θ36.
(b) Estimated CCRCs for θ84. Causal effects were estimated using available cases (blue squares)
and multiple imputation, mean over 20 imputed data sets (red dots); results represent the mean
over 1000 seeds.

primarily due to the unobserved variables (TIt), which directly cause missingness in variables from
the c-DAG.

We multiply imputed five data sets using the Expectation-Maximization Bootstrap (EMB)
Algorithm, a joint modeling-based imputation approach implemented in the R-package Amelia
II. Our setup considered the longitudinal setup through lag-variables and the inclusion of splines
of time. In addition, to improve numerical stability of the EM algorithm, we added a ridge prior
(which shrinks the covariances among the variables toward zero without changing the means or
variances). This is often recommended when using EMB on small samples (Honaker et al. 2011).
To address the fact that age, weight and EFV concentrations can not have negative or other illogical
values, we specified lower and upper bounds for those variables in the EMB algorithm: 0 and 35
for EFV, 0 and 3 for log age and 2 and 4 for log weight. Amelia II implements these bounds by
rejection sampling: when drawing the imputations from the respective posterior distributions, all
logical constraints need to be satisfied; otherwise, imputations are redrawn until those constraints
are met.

The results of our analyses are presented in Fig. 4a and b.
One can see a higher probability of viral failure with lower EFV concentration values, inde-

pendent of the approach used to address the missing data. Using the suggested available cases
approach, the probability of failure is estimated to be > 50% at both 36 and 84 wks if concentrations
were 0mg/L, e.g. if patients did not take any medications. With higher concentrations, failure
probabilities decrease to below 5%, which is expected as EFV is expected to be a potent drug.
Interestingly, the CCRCs estimated using multiple imputation are much flatter than under the
available case approach, both for θ36 and θ84.

We will now explore the derived theoretical results, along with comparisons between the avail-
able case and multiple imputation approaches in the simulation studies below.

5. SI MUL ATION ST UDIES
In this section, through simulation studies, we assess the reliability of CCRC estimates for θ84 in
the presence of missing data. We compare true CCRC values with estimates derived from: (i) an
ideal scenario with no missing data (complete data analysis), (ii) available case analysis, and (iii)
multiple imputation.
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5.1. Setup
The data were simulated using the R-package simcausal (Sofrygin et al. 2017), which is a
powerful and flexible tool for simulation of longitudinal data structures based on structural causal
models. A structural causal model (SCM) uniquely imposes a causal graph, allowing data structures
to be generated according to such a causal DAG (in our case, an m-DAG).

Simulation 1: We simulate data corresponding to both m-DAGs, Gmain and Galt1, as defined in
Fig. 3. We first simulate binary and normally distributed confounder sets, a continuous (truncated
normally distributed) intervention and a binary outcome for all 6 time points and for the sample
size of n = 5.000. This way, the data aligning with the c-DAG is simulated. Afterwards, we simulate
the binary variables causing missingness (SESt (as proxy for BMQt , SESt and BHVt), MVt and TIt ,
t ∈ {0, 6, 36, 48, 60, 84}. Based on these variables, we simulate the missingness indicators for VLt ,
t ∈ {0, 6, 36, 48, 60, 84}, and MEMSt , t ∈ {6, 36, 48, 60, 84}. In this scenario, we assume that only
these two variables (for all time points) are subject to missing data.

Simulation 2: The DGP is the same as for Simulation 1, but we simulate missingness indi-
cators for many more variables: VLt , Weightt , t ∈ {0, 6, 36, 48, 60, 84}, and MEMSt , EFVt , t ∈
{6, 36, 48, 60, 84}. This scenario mostly coincides with the GPD induced by Fig. 3. This scenario
introduces another layer of complexity because the distribution of EFVt , t ∈ {6, 36, 48, 60, 84}
is non-symmetric and complex. Using a parametric imputation model with slightly misspecified
distributional assumptions may introduce some bias. This setting serves as a benchmark for a
realistic scenario where missing data with somewhat complex distributions are imputed using para-
metric assumptions in conjunction with predictive mean matching (fully conditional imputation
procedures, like (M)ICE), or variations thereof (joint modeling, as in Amelia IIwhich we use
below).

The exact model specifications are given in Appendix D.1. Based on the DGP, we first simulate
the interventional data (1000 repetitions) and compute the true CCRC based on it. We intervene
on EFV at time points 6, 36, 48, 60, and 84, considering a sequence of interventions from 0 up to
10 mg/L with steps of 0.5 mg/L. Next, the CCRC is estimated using the g-formula factorization
provided in Appendix B.1, once on the complete data and once on the available case data. Compared
to the widely used complete case analysis, which relies on samples where all variables in the data
set are observed, the available case analysis retains all samples where variables in the query of
interest (for the g-formula, the variables required for the estimation of the conditional distribution
of interest) are observed. For this reason, an available case analysis is preferred over a complete
case analysis due to a more economical usage of available data (Mohan and Pearl 2021). Finally, the
CCRC is estimated using multiple imputation (MI) and the g-formula.

5.2. Results
Below, we focus on the results from Simulation 1. The results of the Simulation 2are presented in
Appendix D.2, specifically in Figs. D.1a and D.1b.

The simulation results align with the theoretical findings. We first consider the estimated CCRC
curve for elevated viral load after 84 wks based on data simulated under Gmain, as presented in
Fig. 5a. According to the findings in Section 4, the missingness mechanism is of MNAR type.
Despite this, the causal query of interest, θ84, remains recoverable, allowing for consistent esti-
mation of the CCRC via an available case analysis. Conversely, the MI approach is inadmissible
due to its underlying assumption of Missing At Random (MAR), which is not met because of the
partially observed variables TIt , t ∈ 0, 6, 36, 48, 60, 84, that affect the probability of missingness
in variables from Vm. The estimated counterfactual outcomes, illustrated in Fig. 5b, represent the
mean estimated values across 1000 simulation repetitions. It is evident that the CCRC estimates
from available case analysis (dashed blue line) match the true CCRC (dashed green line), whereas
those derived from MI differ markedly. To determine whether the discrepancies represent a bias
or could also be explained by simulation uncertainty, we calculated Monte Carlo confidence
intervals for the differences between the MI estimation results and the true causal effects θ84.
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(a) (b)

Figure 5: Estimated CCRCs for the probability of viral failure after 84 wks. (a) Data simulated
under the main DAG Gmain. (b) Data simulated under the alternative DAG Galt1. Causal effects
were estimated on complete data (black squares), incomplete data using available cases (blue
dots), incomplete data using multiple imputation (red triangles) and counterfactual data (green
diamonds, true CCRC); results represent the mean over 1000 seeds.

The results are reported in Table D.1a and show that for each EFV value, the estimated differences
are significantly different from zero. This discrepancy underscores the theoretical findings regarding
the bias introduced by MI due to the MNAR missingness mechanism.

Secondly, consider the results under the alternative DAG Galt1, presented in Fig. 5b. In this case,
the causal query of interest is non-recoverable. The results confirm this and demonstrate that neither
the available case analysis (dashed blue line) nor the MI estimates (dashed red line) align with the
true CCRC (dashed green line). The respective Monte Carlo confidence intervals, see Tables D.1b
and D.1c in the appendix, show that these differences cannot be explained by simulation uncertainty
alone, which is consistent with the theoretical findings.

These findings highlight the critical need to scrutinize the common MAR-type missingness
assumption, especially in complex longitudinal data scenarios where multiple variables experience
missingness. Our simulation study illustrates how even minor changes in the missingness structure
can dramatically affect recoverability and, consequently, the accuracy of estimation results. This
emphasizes the importance of careful consideration and justification of missingness assumptions
in such analyses.

6. CONCLUSIONS
Our analyses demonstrate the applicability of missingness DAGs to complex longitudinal studies
and show that, in some cases, available case analyses can be valid under MNAR. However, our
application also highlights the substantial effort involved, the technical expertise required, and
sensitivity of results to assumptions in the causal model.

Under the assumptions represented in Fig. 3, the data are missing not at random (MNAR)
because technical issues (TI) with pill containers (frequently) and blood samples (rarely), which we
assume to be direct causes of missingness in multiple variables, have not been measured. However,
we show that these assumptions are sufficient to estimate the desired impact using the available data
and g-formula representations, despite the MNAR mechanism. However, if reasons for missed visits
are caused by the outcome (elevated viral load), as speculated in the alternative DAG, the causal
effect cannot be recovered. Interestingly, additional simulations (Appendix D.2, Fig. D.2) show that
recoverability holds true even if behavioral factors directly cause non-adherence. This corresponds
to the situation discussed in the second alternative DAG, Galt2. However, it is possible that more
complex processes exist between socio-economic/behavioral factors and biologic processes, for
which identifiability does not hold. Our investigations demonstrate the sensitivity of recoverability
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results to even minor changes in the missingness structure. We therefore emphasize the need for
careful inspection of the assumptions regarding the missing data mechanism, especially in complex
longitudinal studies with multiple variables experiencing missingness.

It is also important to highlight that the estimated concentration-response curves are much flatter
when using multiple imputation and are actually invalid under the assumptions stated in Fig. 3, as
predicted by theory and confirmed by our simulations.

Our analyses show lower probabilities of viral failure with higher concentrations after accounting
for the missing data. There are, of course, many further complications that may have to be consid-
ered for accurate causal inference in our setting. First, one may also account for measurement error,
e.g. in viral load and EFV concentrations (Schomaker et al. 2015), though this may not affect our
binary viral failure definition very much. Second, it would be advantageous if measurements were
available more frequently and precisely, especially for measuring actual adherence to the prescribed
treatment plan, which is difficult in practice.

While advancements in causal modeling and appropriate statistical estimation techniques are
impressive, answering complex epidemiological and biological questions remains a challenge.

A. STRUCT UR A L EQUATION MODEL
We now present the non-parametric structural equation models (SEMs) corresponding to the m-
DAGs in Fig. 3. Note that the follow-up time points 1 through 5 coincide with the study weeks 6,
36, 48, 60, and 84. The independent (joint) noise term is denoted as U.

The SEM corresponding to Gmain in Fig. 3 is as follows:
For t = 0:

Genotype = fGenotype(Sex, UGenotype)

Weight0 = fWeight0(Sex, Age, UWeight0)

NRTI0 = fNRTI(Age, UNRTI)

MV0 = fMV0(BMQ, SES, BHV, UMV0)

For t = 1:

Dose1 = fDose1(Weight1, UDose1)

For t ≥ 0:

MWeightt = fMWeightt
(MVt , UMWeightt

)

MVLt = fMVLt
(MVt , TIt , UMVLt

)

For t ≥ 1:

MEMSt = fMEMSt (CoMot−1, MEMSt−1, UMEMSt ) [assume MEMS0 = 0]
Weightt = fWeightt (Weightt−1, CoMot−1, UWeightt )

CoMot = fCoMot (CoMot−1, Age, Weightt−1, VLt−1, UCoMot )

EFVt = fEFVt (Doset , MEMSt , Genotype, UEFVt )

VLt = fVLt (VLt−1, CoMot−1, EFVt , UVLt )

MVt = fMVt (BMQ, SES, BHV, UMVt )

MEFVt = fMEFVt
(MVt , TIt , UMEFVt

)

MMEMSt = fMMEMSt
(TIt , UMMEMSt

)

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxae044/7902044 by guest on 26 D

ecem
ber 2024



18 · Holovchak et al.

For t ≥ 2:

Doset = fDoset (Doset−1, Weightt , UDoset )

The SEM for Galt1 (with present blue dashed lines in Fig. 3) is the same as the SEM above,
except for the structural equations for MVt , t ∈ {0, 6, 36, 48, 60, 84}. These are specified as follows
for Galt1:

For t = 0:

MV0 = fMV0(BMQ, SES, BHV, VL0, UMV0)

For t ≥ 1:

MVt = fMVt (BMQ, SES, BHV, VLt , UMVt )

This way, MVt additionally depends on VLt , t ∈ {0, 6, 36, 48, 60, 84}, which corresponds to the
dashed blue lines in the DAG.

B. I D E N T I F I A BI L I T Y R E SU LTS
B.1. Identifiability results for θ84

The identifiability result below is based on application of the IDC algorithm (Shpitser and Pearl
2006).

θ84 =
∑

Age, Sex, CoMo0, Weight0,
MEMS6,Weight6,VL0,CoMo6,

VL6, MEMS36, Weight36, CoMo36,
MEMS48,Weight48,VL36,CoMo48,

VL48,CoMo60,VL60

P(VL84 = 1|Age, Sex, CoMo0, Weight0, Genotype, MEMS6, Weight6,

Dose6, EFV6 = a, VL0, CoMo6, VL6, MEMS36,

Weight36, CoMo36, Dose36, MEMS48, Weight48, EFV36 = a,

Dose48, VL36, EFV48 = a, CoMo48, VL48, MEMS60, Weight60, CoMo60,

Dose60, MEMS84, Weight84, EFV60 = a, Dose84, VL60, EFV84 = a)

P(VL60|Age, Sex, CoMo0, Weight0, Genotype, MEMS6, Weight6,

Dose6, EFV6 = a, VL0, CoMo6, VL6, MEMS36,

Weight36, CoMo36, Dose36, MEMS48, Weight48, EFV36 = a, Dose48,

VL36, EFV48 = a, CoMo48, VL48, MEMS60, Weight60, Dose60, EFV60 = a)

P(CoMo60|Age, Sex, CoMo0, Weight0, Genotype, MEMS6, Weight6,

Dose36, Dose6, EFV6 = a, VL0, CoMo6, VL6, MEMS36, Weight36, CoMo36,

MEMS48, Weight48, EFV36 = a, Dose48, VL36, EFV48 = a, CoMo48, VL48)

P(VL48|Age, Sex, CoMo0, Weight0, Genotype, MEMS6, Weight6, Dose6,

EFV6 = a, VL0, CoMo6, VL6, MEMS36, Weight36, CoMo36, Dose36,

MEMS48, Weight48, EFV36 = a, Dose48, VL36, EFV48 = a)

P(CoMo48|Age, Sex, CoMo0, Weight0, Genotype, MEMS6, Weight6,

Dose6, EFV6 = a, VL0, CoMo6, VL6, MEMS36,

Weight36, CoMo36, Dose36, EFV36 = a, VL36)
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P(Weight48|Age, Sex, CoMo0, Weight0, Genotype, MEMS6, Weight6,

Dose6, EFV6 = a, VL0, CoMo6, VL6, Weight36, CoMo36)

P(MEMS48|Age, Sex, CoMo0, Weight0, Genotype, MEMS6, Weight6,

Dose6, EFV6 = a, VL0, CoMo6, VL6, MEMS36, CoMo36)

P(CoMo36|Age, Sex, CoMo0, Weight0, Genotype, MEMS6, Weight6,

Dose6, EFV6 = a, VL0, CoMo6, VL6)

P(VL36|Age, Sex, CoMo0, Weight0, Genotype, MEMS6, Weight6, Dose6,

EFV6 = a, VL0, CoMo6, VL6, MEMS36, Weight36, Dose36, EFV36 = a)

P(Weight36|Age, Sex, CoMo0, Weight0, Genotype, Weight6,

VL0, CoMo6)P(MEMS36|Age, Sex, CoMo0, Weight0, Genotype, MEMS6,

VL0, CoMo6)P(VL6|Age, Sex, CoMo0, Weight0, Genotype,

MEMS6, Weight6, Dose6, EFV6 = a, VL0)

P(CoMo6|Age, Sex, CoMo0, Weight0, Genotype, VL0)

P(Weight6|Age, Sex, CoMo0, Weight0)P(MEMS6|CoMo0)

P(Weight0|Age, Sex)P(CoMo0|Age, Sex)P(VL0)P(Sex)P(Age) (5)

An alternative identifiability result can be obtained, for example, by applying the generalized
back-door criterion. This results in using an adjustment set given by the confounders weight
and adherence (MEMS). Both dose and co-morbidities are not necessarily required to block the
relevant back-door paths from EFVt to VLt∗ , t∗ ≥ t, i.e. the back-door paths that do not pass through
any future concentrations (Hernán and Robins 2020a). Applying Robins’ parametric g-formula
(Robins 1986; Hernán and Robins 2020a) leads to the following valid g-formula factorization:

θ84 =
∫

l

{
P(VL84 = 1|Ā84 = ā84, L̄84 = l̄84)

×
84∏

s=0
f (Ls = ls|Ās−1 = ās−1, L̄s−1 = l̄s−1)

}
dFl(l) , (6)

where FL(·) denotes the CDF with respect to L. In the above, Lt = {weightt , MEMSt}, L0 =
{weight0, NRTI, Genotype, Sex, Age} and At = EFVt . Note that the overbar refers to the inter-
vention and confounder histories, i.e. for of a unit i (up to and including time t) the histories are
Āt,i = (A0,i, . . . , At,i) and L̄s

t,i = (Ls
0,i, . . . , Ls

t,i), s = 1, 2, i = 1, . . . , n, respectively. Outcomes (i.e.
VL) prior to s are part of L̄s. The inner product of the 2 time-varying and ordered confounders
Ls = {L1

s , L2
s } can be decomposed further:

84∏
s=0

f (L2
s = l2s | L1

s = l1s , Ās−1 = ās−1, L̄s−1 = l̄s−1) × f (L1
s = l1s | Ās−1 = ās−1, L̄s−1 = l̄s−1)

Thus, implementing (6), requires fitting models for the outcome and two confounder distributions
at each time point, given their respective history.
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C. R ECOVER A BI LIT Y R E SULTS FOR θ36
C.1. Assuming Gmain

To assess the recoverability of the identified causal effect θ36 in Equation 3, we must show that
each of the multiplicative factors corresponding to the conditional or marginal distributions can
be expressed in terms of the observed data only. Although the missingness mechanism is of the
“closed” type, and the recoverability result is directly available for this case, we want to demonstrate
how one would examine identifiability if such a result is not available. T do so, we present the result
for one of the conditional distributions containing partially observed variables. The results for other
multiplicative factors are derived analogously.

P(CoMoM=0
6 |Age, Sex, CoMoM=0

0 , WeightM=0
0 , Genotype, VLM=0

0 )

= P(CoMoM=0
6 |Age, Sex, CoMoM=0

0 , WeightM=0
0 , Genotype, VLM=0

0 , M = 0)

= P(CoMo6|Age, Sex, CoMo0, Weight0, Genotype, VL0, M = 0)

The first equality holds due to the fact that all partially observed variables are independent of
the corresponding relevant missingness indicators, whereas the second equality is true due to the
consistency assumption (Moreno-Betancur et al. 2018).

Note that the recoverability result above is trivial due to the specific missingness mechanism. In
a general case, much more effort is required to recover a distribution of interest.

C.2. Assuming Galt2
We consider a second plausible alternative m-DAG, Galt2, which is equivalent to Gmain in Fig. 3,
with the addition of a direct effect of BHV on MEMS for weeks 6, 36, 48, 60 and 84. In this model,
we propose that behavioral pattern may affect adherence.

Under Galt2, the identified expression for the causal effect of interest, θ36, is as follows:

θ36 =
∑

Age, Sex, CoMo0, Weight0,
VL0, CoMo6, VL6

P(VL36|Age, Sex, BHV , CoMo0, Weight0, Genotype, MEMS6,

Weight6, Dose6, EFV6 = a, VL0, CoMo6, VL6, MEMS36, Weight36,

Dose36, EFV36 = a)

P(VL6|Age, Sex, CoMo0, Weight0, Genotype, MEMS6,

Weight6, Dose6, EFV6 = a, VL0)

P(CoMo6|Age, Sex, CoMo0, Weight0, Genotype, VL0)

P(Weight0|Age, Sex)P(CoMo0|Age, Sex)P(VL0)P(Sex)P(Age).

(7)

Note that even if the identified expression looks almost identical to the one we obtain under Gmain
or Galt1 (compare Equation 3), the recoverability result may differ due to the different conditional
independence statements that hold in Galt2, assuming it is faithful.

D. SI MUL ATION ST UDIES
D.1. DGP for simulations 1 and 2

Both baseline data (t = 0) and follow-up data (t = 1, . . . , 5) were created using structural equations
with the R-package simcausal. Note that the follow-up time points 1 through 5 correspond to
the study weeks 6, 36, 48, 60 and 84. The distributions listed below, in temporal order, describe the
data-generating process. Our baseline data consists of Sex, Genotype, log(age) (Age), log(weight)
(Weight), the respective Nucleoside Reverse Transcriptase Inhibitor (NRTI), and a proxy for
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socio-economic status (SES). The time-varying variables are co-morbidities (CoMo), efavirenz
dose (Dose), efavirenz mid-dose concentration (EFV), elevated viral load (= viral failure, VL),
adherence (measured through memory caps, MEMS), missed visit (MV), technical issues (TI), and
the missingness indicators for EFV , Weight, VL, and MEMS, respectively. In addition to Bernoulli
(B), Poisson (Poisson), Multinominal (MN) and Normal (N) distributions, we also use truncated
normal distributions, denoted by N[a,a1,a2,b,b1,b2], where a and b are the truncation levels. Values
smaller than a are replaced by a random draw from a U(a1, a2) distribution and values greater than
b are drawn from a U(b1, b2) distribution, where U refers to a continuous uniform distribution. For
the specified multinomial distributions, probabilities are normalized, if required, to ensure they add
up to 1.

The DGP corresponding to Gmain in Fig. 3 is as follows:
For t = 0:

Sex0 ∼ B(p = 0.5)

Genotype0 ∼ MN

⎛
⎜⎝ p1 = 1/(1 + exp(−(−0.103 + I(Sex0 = 1) × 0.223 + I(Sex0 = 0) × 0.173))) ,

p2 = 1/(1 + exp(−(−0.086 + I(Sex0 = 1) × 0.198 + I(Sex0 = 0) × 0.214))) ,
p3 = 1/(1 + exp(−(−0.309 + I(Sex0 = 1) × 0.082 + I(Sex0 = 0) × 0.170)))

⎞
⎟⎠

Age0 ∼ N[0.693,0.693,1,2.8,2.7,2.8](μ = 1.501, σ = 0.369)

Weight0 ∼ N[2.26,2.26,2.67,3.37,3.02,3.37](μ = (1.5 + 0.2 × Sex0 + 0.774 × Age0) × 0.94), σ = 0.369)

NRTI0 ∼ MN

⎛
⎜⎝ p1 = 1/(1 + exp(−(−0.006 + I(Age0 > 1.4563) × Age0 × 0.1735 + I(Age0 ≤ 1.4563) × Age0 × 0.1570))) ,

p2 = 1/(1 + exp(−(−0.006 + I(Age0 > 1.4563) × Age0 × 0.1735 + I(Age0 ≤ 1.4563) × Age0 × 0.1570))) ,
p3 = 1/(1 + exp(−(−0.006 + I(Age0 > 1.4563) × Age0 × 0.1570 + I(Age0 ≤ .14563) × Age0 × 0.1818)))

⎞
⎟⎠

CoMo0 ∼ B(p = 0.15)

VL0 ∼ B(p = 1 − (1/(1 + exp(−(0.4 + 1.9 × √
EFV0)))))

SES0 ∼ Poisson(λ = 3)

MV0 ∼ B(p = 1/(1 + exp(−(−2.95 + 0.1 × SES0))))

For t = 1:

Dose1 ∼ MN

⎛
⎜⎜⎝

p1 = 1/(1 + exp(−(5 + √
(Weight1) × 8 − Age0 × 10))) ,

p2 = 1/(1 + exp(−(4 + √
(Weight1) × 8.768 − Age0 × 9.06))) ,

p3 = 1/(1 + exp(−(3 + √
(Weight1) × 6.562 − Age0 × 8.325))) ,

p4 = 1 − (p1 + p2 + p3)

⎞
⎟⎟⎠

For t ≥ 0:

TIt ∼ B(p = 0.05))))

MEFVt ∼ B(p = I(MVt = 1) + I(MVt = 0) × I(TIt = 1) × 0.5))))

MWeightt ∼ B(p = I(MVt = 1))

MVLt ∼ B(p = I(MVt = 1) + I(MVt = 0) × I(TIt = 1) × 0.5))))

For t ≥ 1:

MEMSt ∼ B(p = 1/(1 + exp(−(0.71 + CoMot−1 × 0.31 + MEMSt−1 × I(t ≥ 2) × 0.31)))), [assume MEMS0 = 0]
Weightt ∼ N[2.26,2.26,2.473,3.37,3.2,3.37](μ = Weightt−1 × 1.04 − 0.05 × I(CoMot−1 = 1), σ = 0.4)
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CoMot ∼ B(p = 1 − (1/(1 + exp(−(0.5 × I(CoMot−1 = 1) + Age0 × 0.1 + Weightt−1 × 0.1)))))

EFVt ∼ N[0.2032,0.2032,0.88,21.84,8.37,21.84](μ = 0.1 × Doset + 0.1 × MEMSt + I(Genotype0 ≤ 2) × 2.66

+I(Genotype0 = 3) × 4.6, σ = 4.06)

VLt ∼ B(p = 1 − (1/(1 + exp(−(1 − 0.6 × I(t = 1) − 1.2 × I(t = 4) + 0.1 × CoMot−1

+(2 − 0.2 × I(t = 3)) × √
EFVt)))))

MVt ∼ B(p = 1/(1 + exp(−(−2.95 + 0.1 × SES0 + MVt−1))))

MMEMSt ∼ B(p = 1/(1 + exp(−(0.5 × I(TIt = 1) + 0.2))))

For t ≥ 2:

Doset ∼ MN

⎛
⎜⎜⎝

p1 = (1/(1 + exp(−(4 + Doset−1 × 0.5 + √
Weightt × 4 − Age0 × 10))) ,

p2 = (1/(1 + exp(−(−8 + Doset−1 × 0.5 + √
Weightt × 8.568 − Age0 × 9.06))) ,

p3 = (1/(1 + exp(−(20 + Doset−1 × 0.5 + √
Weightt × 6.562 − Age0 × 18.325))) ,

p4 = 1 − (p1 + p2 + p3)

⎞
⎟⎟⎠

The DGP for Galt1 (including the blue dashed lines in Fig. 3) coincides with the DGP above,
except for the structural equations for MVt , t ∈ {0, 6, 36, 48, 60, 84}. These are specified as follows
for Galt1:

For t = 0:

MV0 ∼ B(p = 1/(1 + exp(−(−2.95 + 0.1 × SES0 + 2 × VL0))))

For t ≥ 1:

MVt ∼ B(p = 1/(1 + exp(−(−2.95 + 0.1 × SES0 + MVt−1 + 2 × VLt))))

Thus, MVt additionally depends on VLt , t ∈ {0, 6, 36, 48, 60, 84}, which corresponds to the dashed
blue lines in the DAG.

The DGP for Galt2 (where SES is a cause of MEMSt , t ∈ {6, 36, 48, 60, 84}) coincides with the
DGP for Gmain above, except for the structural equations for MEMSt , t ∈ {6, 36, 48, 60, 84}. These
are specified for Galt2 as follows:
For t ≥ 1:

MEMSt ∼ B(p = 1/(1 + exp(−(0.71 + CoMot−1 × 0.31 + MEMSt−1

×I(t ≥ 2) × 0.31 − SES0 × 0.5))))

After generating the data set using the structural equations, we introduce missing values based on
the missingness indicators: if a missingness indicator equals 1, the corresponding covariate value is
set to NA. In Simulation 1, we ignore the missingness indicators for EFVt , t ∈ {6, 36, 48, 60, 84},
and Weightt , t ∈ {0, 6, 36, 48, 60, 84}, and generate missingness only in VLt and MEMSt , t ∈
{0, 6, 36, 48, 60, 84}. In Simulation 2, missingness is introduced in EFVt , t ∈ {6, 36, 48, 60, 84},
Weightt , VLt and MEMSt , t ∈ {0, 6, 36, 48, 60, 84}.

D.2. Results
The results below are based on Simulation 2 as defined in Section 5.

The following results are based on simulation 1 as defined in Section 5 under the assumption of
Galt2 being the true underlying causal m-DAG.
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(a) (b)

Figure D.1: Estimated CCRCs for the probability of viral failure after 84 wks. (a) Data simulated
under the main DAG Gmain. (b) Data simulated under the alternative DAG Galt1. Causal effects
were estimated on complete data (black squares), incomplete data using available cases (blue
dots), incomplete data using multiple imputation (red triangles) and counterfactual data (green
diamonds, true CCRC); results represent the mean over 1000 seeds.

Figure D.2: Estimated CCRCs for the probability of viral failure after 84 wks based on data simulated
under the main DAG Galt2. Causal effects were estimated on complete data (black squares),
incomplete data using available cases (blue dots), incomplete data using multiple imputation (red
triangles) and counterfactual data (green diamonds, true CCRC); results represent the mean over
1000 seeds.

D.3. Monte Carlo confidence intervals
The Monte Carlo confidence intervals in Tables D.1a, D.1b, and D.1c are reported to determine
whether the differences between MI estimates and true values (main and alternative m-DAGs,
Gmain and Galt1), and between available case analysis estimates and true causal effects θ84 (alter-
native m-DAG Galt1) stem from simulation uncertainty or indicate systematic deviations. A 95%
confidence interval [mean difference −2 · SE; mean difference +2 · SE], with the standard error
SE computed as sd(estimate)/

√
(#runs), excluding zero suggests that the differences can likely not

be explained by simulation uncertainty, indicating a bias caused by the estimation approach.
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Table D.1. Monte Carlo confidence intervals for the difference between estimates and true causal effects
across efavirenz (EFV) concentrations. (a) Multiple imputation estimates under the main m-DAG
Gmain. (b) Available case estimates under the alternative m-DAG Galt1. (c) Multiple imputation (MI)
estimates under the alternative m-DAG Galt1.

(a) Multiple imputation under Gmain

EFV Lower Upper

0.0 -0.19441 -0.19351
0.5 -0.04522 -0.04452
1.0 -0.00881 -0.00824
1.5 0.00696 0.00749
2.0 0.01493 0.01539
2.5 0.01774 0.01817
3.0 0.01842 0.01880
3.5 0.01812 0.01847
4.0 0.01721 0.01754
4.5 0.01626 0.01656
5.0 0.01502 0.01530
5.5 0.01403 0.01429
6.0 0.01309 0.01335
6.5 0.01191 0.01214
7.0 0.01123 0.01145
7.5 0.01051 0.01071
8.0 0.00952 0.00971
8.5 0.00886 0.00904
9.0 0.00810 0.00827
9.5 0.00750 0.00766

10.0 0.00685 0.00701

(b) Available case under Galt1

EFV Lower Upper

0.0 –0.12787 –0.10112
0.5 –0.04754 –0.03497
1.0 –0.03208 –0.02512
1.5 –0.02465 –0.02075
2.0 –0.01873 –0.01642
2.5 –0.01470 –0.01320
3.0 –0.01195 –0.01092
3.5 –0.01012 –0.00935
4.0 –0.00823 –0.00759
4.5 –0.00677 –0.00620
5.0 –0.00558 –0.00509
5.5 –0.00450 –0.00405
6.0 –0.00358 –0.00317
6.5 –0.00296 –0.00257
7.0 –0.00222 –0.00186
7.5 –0.00175 –0.00141
8.0 –0.00145 –0.00115
8.5 –0.00114 –0.00085
9.0 –0.00088 –0.00062
9.5 –0.00074 –0.00048

10.0 –0.00058 –0.00034

(c) Multiple imputation under Galt1

EFV Lower Upper

0.0 –0.29980 –0.29904
0.5 –0.10118 –0.10062
1.0 –0.04923 –0.04876
1.5 –0.02354 –0.02312
2.0 –0.00888 –0.00849
2.5 –0.00111 –0.00076
3.0 0.00326 0.00358
3.5 0.00583 0.00614
4.0 0.00727 0.00755
4.5 0.00804 0.00830
5.0 0.00832 0.00857
5.5 0.00849 0.00871
6.0 0.00851 0.00872
6.5 0.00815 0.00835
7.0 0.00819 0.00838
7.5 0.00795 0.00814
8.0 0.00749 0.00766
8.5 0.00718 0.00734
9.0 0.00675 0.00691
9.5 0.00640 0.00655

10.0 0.00605 0.00620
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