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Background

I South Africa faced repeated episodes of temporary power
shutdowns in 2014-2015 (and currently again since 2018).

I Because the power supplier ESKOM was not able to satisfy the
power demand, load shedding was implemented for several
hours a day.

I Times and areas affected by load shedding have been
communicated by ESKOM to the public on short notice
(Twitter, homepages).
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Case Reports from Red Cross Children’s Hospital

I Because of load-shedding candles are used, little boy brushes
teeth, pyjamas catch fire, burn wounds, wounds get infected...

I Mother creates temporary outdoor fireplace for cooking because
of load-shedding, not much light, pan with hot fat placed in the
dark, children play and one steps into the hot fat...
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Objective

To evaluate whether load shedding has an effect on the number of
hospital admissions at Red Cross Children’s Hospital.
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Data

I Study period: between 1 June 2014 and 31 May 2015.

I Outcome (Y ): The number of unplanned admissions of children
up to 13 years of age (by ICD-10 code).

I Intervention (A): Binary indicator whether load shedding was
implemented on the same day (or any of the 2 preceding days).
→ Collected from Twitter and Facebook, verified later with data
from the City of Cape Town (no co-operation from ESKOM).

I Confounders and other variables (L), see DAG: current and past
weather, season, month, week of payment, past admissions.
→ co-operation with South African Weather Service
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1) ESKOM (CEO Dames, B), Power System Emergency, 03/2014 (accessed on 03/2017, http://www.eskom.co.za/OurCompany/MediaRoom/Documents/poweremergency6march.pdf)
2) Bateman, C. (2008). "Eskom debacle: health care risks, frustrations climb." S Afr Med J 98(3): 171-173.
3) Sigauke, C. et al.(2010)."Daily peak electricity load forecasting in South Africa using a multivariate non-parametric regression approach." ORiON 26(2).
4) Hopp, S., et al. (2018). "Medical diagnoses of heat wave-related hospital admissions in older adults." Prev Med 110: 81-85.
5) Ravljen, M., et al. (2018). "Immediate, lag and time window effects of meteorological factors on ST-elevation myocardial infarction incidence." Chronobiol Int 35(1): 63-71.
6) de Pablo, F., et al. (2009). "Winter circulation weather types and hospital admissions for cardiovascular, respiratory and digestive diseases in Salamanca, Spain." Int J Climatol
29(11):1692-1703.
* Changes in weather conditions to more extremes like heat or cold lead to increasing demand by air conditioning or electric heaters and might directly influence health states.
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Analytical Approach

I Descriptives

I Quasi-Poisson regression

I Doubly robust causal inference
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Descriptives (I)

I During the study period between June 2014 to May 2015, Cape
Town experienced 72 days of load shedding, 48 during the week
and 24 on the weekend.

I Load shedding started as soon as 11 June 2014, but many
events (38) occurred in April/May 2015.

I The mean number of unscheduled admissions during the study
period was about 57.

I On days of load shedding there were on average 61.3
admissions a day, and on days without there were about 56.7
admissions.
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Descriptives (II)
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Regression Analysis (I)

Large set of variables (> 40):

I weather: hours of sunshine (L1), wind speed (L2), humidity (L3),
pressure (L4), precipitation (L5), temperature (L6) – on current
day and past 2 days

I season: month (L7), week of payment (L8), and a seasonal
(weekly) trend modeled via sine and cosine terms, i.e.

cos(ωk t) and sin(ωk t) with ωk =
2kπ
T

, with T = 7 days

i.e. cos(ω1t) = L9, sin(ω1t) = L10, cos(ω2t) = L11, sin(ω2t) = L12,
cos(ω3t) = L13, sin(ω3t) = L14, cos(ω4t) = L15, sin(ω4t) = L16

I We also need to take past admissions (i.e. Yi−lag,
lag ∈ {1,2, . . . ,13,14,21,28}) into account
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Regression Analysis (II)

After limiting the number of variables (using model averaging1) to the
most important ones (for computational feasibility), we use the
following Quasi-Poisson model:

E(Y ) = exp(β0 + β1A︸︷︷︸
load shedding

+ L∗β2︸ ︷︷ ︸
season

+f1(Yi−1) + f2(Yi−3) + f3(Yi−7) + f4(Yi−9)︸ ︷︷ ︸
past admissions

+f5(L1) + f6(L2) + f7(L5)

+f8(L3
i−1) + f9(L5

i−1) + f10(L6
i−1) + f11(L2

i−2))︸ ︷︷ ︸
(past) weather

with L∗ = (L7,L8,L9,L10,L11,L12) being the seasonal trend.

1see paper [1] for details
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Regression Analysis (III)

IRR 95% CI VI
Main Result 1.10 1.04;1.15

Weekday 1.12 1.07;1.18
Weekend 1.01 0.91;1.11

LS: same day 1.05 1.00;1.11 0.30
LS: 1 day prior 1.09 1.04;1.15 0.85

LS: 2 days prior 1.07 1.01;1.13 0.69
LS: 3 days prior 1.07 1.01;1.13 0.40
LS: 4 days prior 0.98 0.93;1.04 0.34

Surgical cases 1.08 1.00;1.16
Medical cases 1.11 1.00;1.16

→ see paper [1] for specific ICD-10 codes and diagnoses
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Regression Analysis (IV)
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Causal Approach, TMLE (I)

I Average Treatment Effect (ATE): “The difference in expected
number of admissions per day had there been load shedding
each day or on any of the preceding 2 days compared to if there
had not been any load shedding”.

ψ = E(Y 1)− E(Y 0),

I Estimate ψ with TMLE2. TMLE requires fitting of

1. E(Y |A,L) and

2. P(A = 1|L)

with regression models or machine learning, and also

3. another regression that updates an initial estimate of ψ

2see Luque-Fernandez et al. [2] for a tutorial



18/27

Causal Approach, TMLE (II)

I TMLE is doubly robust

I This means that if ONLY ONE of the two models estimating

1. E(Y |A,L)

2. P(A = 1|L)

are specified correctly, one can estimate the ATE consistently!

I If both are estimated consistently, one has an efficient estimator
(smallest variance among respective class of estimators)

I Difficult to specify models correctly (we have > 40 variables)
→ use “super learning”



19/27

Causal Approach, TMLE (III)

1. Estimate Q̄0(A,L) = E(Y |A = a,L = l) and set A = 0 and A = 1:
to get the predictions

ˆ̄Q0(1,L) = Ê(Y |A = 1,L) and
ˆ̄Q0(0,L) = Ê(Y |A = 0,L) .

For continuous outcomes, like “number of admissions”, use
Y ∗ = (Y − a)/(b − a).

2. Estimate g0(A|L) = P(A = 1|L) to get the predictions

ĝ0(1|L) = P̂(A = 1|L) and
ĝ0(0|L) = 1− ĝ0(1|L) .
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Causal Approach, TMLE (IV)

3. Estimate

log

(
P(Y = 1|A, L)

1− P(Y = 1|A, L)

)
︸ ︷︷ ︸

log(Q̄1(A,L)/[1−Q̄1(A,L)])

− log

(
ˆ̄Q0(A, L)

1− ˆ̄Q0(A, L)

)
= εĤ(A, L)

with

Ĥ(A,L) =
I(A = 1)

ĝ0(1|L)
− I(A = 0)

ĝ0(0|L)
.

which is a regression (Quasi-Binomial, or logistic)

a) without intercept

b) with “offset” log(Q̄0(A, L)/[1− Q̄0(A, L)])

c) and “clever covariate” Ĥ(A, L)
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Causal Approach, TMLE (V)

4. Estimate ATE as

ψATE,TMLE =
1
n

n∑
i=1

( ˆ̄Q1
i (1,Li )− ˆ̄Q1

i (0,Li ))

I easy to calculate confidence intervals, appropriate to leave
model specification to “machine learning”.

I Results using same variables L as in Quasi-Poisson regression
and using extensive machine learning:

ATE 95% CI
TMLE 6.50 5.12; 7.87

Linear Model 5.04 2.29; 7.80
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Conclusion

I Load shedding, as implemented in RSA, is associated with an
increase in hospital admissions of children, on the same day and
up to two days following the power interruption.

I Under the assumption that the assumed DAG is correct, and that
the modeling approach is appropriate, this effect (as estimated
by the ATE) is causally interpretable.
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Discussion

I Most accidents happen at night and at home; Capetonians have
long daily commutes (>2 hours one-way) which could explain
why load shedding affected admissions primarily during
weekdays.

I Results on individual diagnoses were imprecise.

I Our results may indicate that poorer areas could be affected
more heavily by load shedding than wealthier areas. However,
wherever load shedding was not directly controlled by the city but
ESKOM, data was unavailable.
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Media
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Video Abstract
On Epidemiology website:
https://journals.lww.com/epidem/pages/videogallery.
aspx?videoId=84&autoPlay=false

https://journals.lww.com/epidem/pages/videogallery.aspx?videoId=84&autoPlay=false
https://journals.lww.com/epidem/pages/videogallery.aspx?videoId=84&autoPlay=false
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Appendix: Super Learning
1. First, split the data into blocks of equal size (i.e. ten blocks of 100

observations for a sample size of 1,000 units and the choice of
10-fold cross-validation) and fit each of the selected algorithms
on the training set (i.e. on 9 out of the 10 blocks).

2. Then, predict the estimated probabilities of the outcome (Y )
using the validation set (i.e. the remaining one block) for each
algorithm.

3. Repeat steps 1 and 2 for each of the ten blocks. This yields
predictions for all 1,000 observations for each learning algorithm.

4. Now, estimate the cross validated risk for each learning
algorithm, that is a function of the true values of Y and the
respective predictions, e.g.the (vector of the) squared
differences.

5. Then, use non-negative least squares estimation to find the
weighted linear combination of predictions (related to each
learner) which predicts Y best. The weights sum up to one.

6. Then, use the weights to create a weighted prediction from the
different learning algorithms applied to the complete data.




