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Many modern estimators require bootstrapping to calculate con-
fidence intervals because either no analytic standard error is available
or the distribution of the parameter of interest is non-symmetric.
It remains however unclear how to obtain valid bootstrap inference
when dealing with multiple imputation to address missing data. We
present four methods which are intuitively appealing, easy to imple-
ment, and combine bootstrap estimation with multiple imputation.
We show that three of the four approaches yield valid inference, but
that the performance of the methods varies with respect to the num-
ber of imputed data sets and the extent of missingness. Simulation
studies reveal the behavior of our approaches in finite samples. A
topical analysis from HIV treatment research, which determines the
optimal timing of antiretroviral treatment initiation in young chil-
dren, demonstrates the practical implications of the four methods in
a sophisticated and realistic setting. This analysis suffers from miss-
ing data and uses the g-formula for inference, a method for which no
standard errors are available.
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1. Introduction. Multiple imputation (MI) is a popular method to address missing data.
Based on assumptions about the data distribution (and the mechanism which gives rise to the
missing data) missing values can be imputed by means of draws from the posterior predictive
distribution of the unobserved data given the observed data. This procedure is repeated to
create M imputed data sets, the analysis is then conducted on each of these data sets and the
M results (M point and M variance estimates) are combined by a set of simple rules [1].

During the last 30 years a lot of progress has been made to make MI useable for different
settings: implementations are available in several software packages [2, 3, 4, 5], review articles
provide guidance to deal with practical challenges [6, 7, 8], non-normal –possibly categorical–
variables can often successfully be imputed [9, 3, 6], useful diagnostic tools have been suggested
[3, 10], and first attempts to address longitudinal data and other complicated data structures
have been made [11, 4].

While both opportunities and challenges of multiple imputation are discussed in the litera-
ture, we believe an important consideration regarding the inference after imputation has been
neglected so far: if there is no analytic or no ideal solution to obtain standard errors for the
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parameters of the analysis model, and nonparametric bootstrap estimation is used to estimate
them, it is unclear how to obtain valid inference – in particular how to obtain appropriate
confidence intervals. Moreover, bootstrap estimation is also often used when a parameter’s
distribution is assumed to be non-normal and bootstrap inference with missing data is then
not clear either. As we will explain below, many modern statistical concepts, often applied to
inform policy guidelines or enhance practical developments, rely on bootstrap estimation. It is
therefore necessary to have guidance for bootstrap estimation for multiply imputed data.

In general, one can distinguish between two approaches for bootstrap inference when using
multiple imputation: with the first approach, M imputed datsets are created and bootstrap
estimation is applied to each of them; or, alternatively, B bootstrap samples of the original data
set (including missing values) are drawn and in each of these samples the data are multiply
imputed. For the former approach one could use bootstrapping to estimate the standard error
in each imputed data set and apply the standard MI combining rules; alternatively, the B×M
estimates could be pooled and 95% confidence intervals could be calculated based on the 2.5th

and 97.5th percentiles of the respective empirical distribution. For the latter approach either
multiple imputation combining rules can be applied to the imputed data of each bootstrap
sample to obtain B point estimates which in turn may be used to construct confidence intervals;
or the B ×M estimates of the pooled data are used for interval estimation.

To the best of our knowledge, the consequences of using the above approaches have not
been studied in the literature before. The use of the bootstrap in the context of missing data
has often been viewed as a frequentist alternative to multiple imputation [12], or an option to
obtain confidence intervals after single imputation [13]. The bootstrap can also be used to create
multiple imputations [14]. However, none of these studies have addressed the construction of
bootstrap confidence intervals when data needs to be multiply imputed because of missing data.
As emphasized above, this is however of particularly great importance when standard errors
of the analysis model cannot be calculated easily, for example for causal inference estimators
(e.g. the g-formula).

It is not surprising that the bootstrap has nevertheless been combined with multiple impu-
tation for particular analyses. Multiple imputation of bootstrap samples has been implemented
in [15, 16, 17, 18], whereas bootstrapping the imputed data sets was preferred by [19, 20, 21].
Other work doesn’t offer all details of the implementation [22]. All these analyses give however
little justification for the chosen method and for some analyses important details on how the
confidence intervals were calculated are missing; it seems that pragmatic reasons as well as
computational efficiency typically guide the choice of the approach. None of the studies offer
a statistical discussion of the chosen method.

The present article demonstrates the implications of different methods which combine boot-
strap inference with multiple imputation. It is novel in that it introduces four different, intu-
itively appealing, bootstrap confidence intervals for data which require multiple imputation,
illustrates their intrinsic features, and argues which of them is to be preferred.

Section 2 introduces our motivating analysis of causal inference in HIV research. The differ-
ent methodological approaches are described in detail in Section 3 and are evaluated by means
of both numerical investigations (Section 4) and theoretical considerations (Section 6). The
implications of the different approaches are further emphasized in the data analysis of Section
5. We conclude in Section 7.
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2. Motivation. During the last decade the World Health Organization (WHO) updated
their recommendations on the use of antiretroviral drugs for treating and preventing HIV in-
fection several times. In the past, antiretroviral treatment (ART) was only given to a child
if his/her measurements of CD4 lymphocytes fell below a critical value or if a clinically se-
vere event (such as tuberculosis or persistent diarrhoea) occurred. Based on both increased
knowledge from trials and causal modeling studies, as well as pragmatic and programmatic
considerations, these criteria have been gradually expanded to allow earlier treatment initia-
tion in children: in 2013 it was suggested that all children who present under the age of 5 are
treated immediately, while for older children CD4-based criteria still existed. By the end of
2015 WHO decided to recommend immediate treatment initiation in all children and adults.
ART has shown to be effective and to reduce mortality in infants and adults [23, 24, 25], but
concerns remain due to a potentially increased risk of toxicities, early development of drug
resistance, and limited future options for people who fail treatment.

It remains therefore important to investigate the effect of different treatment initiation rules
on mortality, morbidity and child development outcomes; however given the shift in ART
guidelines towards earlier treatment initiation it is not ethically possible anymore to conduct a
trial which answers this question in detail. Thus, observational data can be used to obtain the
relevant estimates. Methods such as inverse probability weighting of marginal structural mod-
els, the g-computation formula, and targeted maximum likelihood estimation can be used to
obtain estimates in complicated longitudinal settings where time-varying confounders affected
by prior treatment are present — such as, for example, CD4 count which influences both the
probability of ART initiation and outcome measures [26, 27].

In situations where treatment rules are dynamic, i.e. where they are based on a time-varying
variable such as CD4 lymphocyte count, the g-computation formula [28] is the intuitive method
to use. It is computationally intensive and allows the comparison of outcomes for different
treatment options; confidence intervals are typically based on non-parametric bootstrap esti-
mation. However, in resource limited settings data may be missing for administrative, logistic,
and clerical reasons, as well as due to loss to follow-up and missed clinic visits. Depending
on the underlying assumptions about the reasons for missing data, this problem can either
be addressed by the g-formula directly or by using multiple imputation. However, it is not
immediately clear how to combine multiple imputation with bootstrap estimation too obtain
valid confidence intervals.

3. Methodological Framework. Let D be a n × (p + 1) data matrix consisting of an
outcome variable y = (y1, . . . , yn)′ and covariates Xj = (X1j , . . . , Xnj)

′, j = 1, . . . , p. The
1 × p vector xi = (xi1, . . . , xip) contains the ith observation of each of the p covariates and
X = (x1

′, . . . ,xn
′)′ is the matrix of all covariates. Suppose we are interested in estimating

θ = (θ1, . . . , θk)
′, k ≥ 1, which may be a regression coefficient, an odds ratio, a factor loading,

or an counterfactual outcome. If some data are missing, making the data matrix to consist
of both observed and missing values, D = {Dobs,Dmis}, and the missingness mechanism is
ignorable, valid inference for θ can be obtained using multiple imputation. Following Rubin [1]
we regard valid inference to mean that the point estimate θ̂ for θ is approximately unbiased
and that interval estimates are randomization valid in the sense that actual interval coverage
equals the nominal interval coverage.

Under multiple imputation M augmented sets of data are generated, and the imputations
(which replace the missing values) are based on draws from the posterior predictive distribution
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of the missing data given the observed data p(Dmis|Dobs) =
∫
p(Dmis|Dobs;ϑ) p(ϑ|Dobs) dϑ, or

an approximation thereof. The point estimate for θ is

ˆ̄θMI =
1

M

M∑
m=1

θ̂m(3.1)

where θ̂m refers to the estimate of θ in the mth imputed set of data D(m), m = 1, . . . ,M .
Variance estimates can be obtained using the between imputation covariance V̂ = (M −
1)−1

∑
m(θ̂m − ˆ̄θMI)(θ̂m − ˆ̄θMI)

′
and the average within imputation covariance Ŵ = M−1∑

m Ĉov(θ̂m):

Ĉov(ˆ̄θMI) = Ŵ +
M + 1

M
V̂ =

1

M

M∑
m=1

Ĉov(θ̂m)(3.2)

+
M + 1

M(M − 1)

M∑
m=1

(θ̂m − ˆ̄θMI)(θ̂m − ˆ̄θMI)
′
.

For the scalar case this equates to

V̂ar(ˆ̄θMI) =
1

M

M∑
m=1

V̂ar(θ̂m) +
M + 1

M(M − 1)

M∑
m=1

(θ̂m − ˆ̄θMI)
2 .

To construct confidence intervals for ˆ̄θMI in the scalar case, it may be assumed that V̂ar(ˆ̄θMI)
− 1

2 (ˆ̄θMI−
θ) follows a tR-distribution with approximately R = (M − 1)[1 + {MŴ/(M + 1)V̂ }]2 degrees
of freedom [29], though there are alternative approximations, especially for small samples [30].
Note that for reliable variance estimation M should not be too small; see White et al. [6] for
some rules of thumb.

Consider the situation where there is no analytic or no ideal solution to estimate Cov(θ̂m),
for example when estimating the treatment effect in the presence of time-varying confounders
affected by prior treatment using g-methods [31, 26]. If there are no missing data, bootstrap
percentile confidence intervals may offer a solution: based on B bootstrap samples D∗b , b =

1, . . . , B, we obtain B point estimates θ̂∗b . Consider the ordered set of estimates Θ∗B = {θ̂∗(b); b =

1, . . . , B}, where θ̂∗(1) < θ̂∗(2) < . . . < θ̂∗(B); the bootstrap 1 − 2α% confidence interval for θ is
then defined as

[θ̂lower; θ̂upper] = [θ̂∗,α; θ̂∗,1−α]

where θ̂∗,α denotes the α-percentile of the ordered bootstrap estimates Θ∗B. However, in the

presence of missing data the construction of confidence intervals is not immediately clear as θ̂
corresponds to M estimates θ̂1, . . . , θ̂M , i.e. θ̂m is the point estimate calculated from the mth

imputed data set. It seems intuitive to consider the following four approaches:

• Method 1, MI Boot (pooled sample [PS]): Multiple imputation is utilized for the
data set D = {Dobs,Dmis}. For each of the M imputed data sets Dm, B bootstrap samples
are drawn which yields M × B data sets D∗m,b; b = 1, . . . , B;m = 1, . . . ,M . In each of

these data sets the quantity of interest is estimated, that is θ̂∗m,b. The pooled sample of
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ordered estimates Θ∗MIBP = {θ̂∗(m,b); b = 1, . . . , B;m = 1, . . . ,M} is used to construct the

1− 2α% confidence interval for θ:

[θ̂lower; θ̂upper]MIBP = [θ̂∗,αMIBPθ̂
∗,1−α
MIBP ](3.3)

where θ̂∗,αMIBP is the α-percentile of the ordered bootstrap estimates Θ∗MIBP.

• Method 2, MI Boot: Multiple imputation is utilized for the data set D = {Dobs,Dmis}.
For each of the M imputed data sets Dm, B bootstrap samples are drawn which yields
M × B data sets D∗m,b; b = 1, . . . , B; m = 1, . . . ,M . The bootstrap samples are used

to estimate the standard error of (each scalar component of) θ̂m in each imputed data

set respectively, i.e. V̂ar(θ̂m) = (B − 1)−1
∑

b(θ̂m,b −
ˆ̄θm)2 with ˆ̄θm = B−1

∑
b θ̂m,b. This

results in M point estimates (calculated from the imputed, but not yet bootstrapped
data), and M standard errors (calculated from the respective bootstrap samples). More
generally, Cov(θ̂m) can be estimated in each imputed data set using bootstrapping, thus
allowing the use of (3.2) and standard multiple imputation confidence interval construc-
tion, possibly based on a tR-distribution.

• Method 3, Boot MI (pooled sample [PS]): B bootstrap samples D∗b (including
missing data) are drawn and multiple imputation is utilized in each bootstrap sample.
Therefore, there are B × M imputed data sets D∗b,1, . . . ,D∗b,M which can be used to

obtain the corresponding point estimates θ̂∗b,m. The set of the pooled ordered estimates

Θ∗BMIP = {θ̂∗(b,m); b = 1, . . . , B;m = 1, . . . ,M} can then be used to construct the 1−2α%
confidence interval for θ:

[θ̂lower; θ̂upper]BMIP = [θ̂∗,αBMIP; θ̂∗,1−αBMIP ](3.4)

where θ̂∗,αBMIP is the α-percentile of the ordered bootstrap estimates Θ∗BMIP.

• Method 4, Boot MI: B bootstrap samples D∗b (including missing data) are drawn, and
each of them is imputed M times. Therefore, there are M imputed data sets, D∗b,1, . . . ,
D∗b,M , which are associated with each bootstrap sample D∗b . They can be used to ob-

tain the corresponding point estimates θ̂∗b,m. Thus, applying (3.1) to the estimates of

each bootstrap sample yields B point estimates ˆ̄θ∗b = M−1
∑

m θ̂
∗
b,m for θ. The set of

ordered estimates Θ∗BMI = {θ̂∗(b); b = 1, . . . , B} can then be used to construct the 1−2α%
confidence interval for θ:

[θ̂lower; θ̂upper]BMI = [θ̂∗,αBMI; θ̂
∗,1−α
BMI ](3.5)

where θ̂∗,αBMI is the α-percentile of the ordered bootstrap estimates Θ∗BMI.

While all of the methods described above are straightforward to implement it is unclear if
they yield valid inference, i.e. if the actual interval coverage level equals the nominal coverage
level. Before we delve into some theoretical and practical considerations we expose some of the
intrinsic features of the different interval estimates using Monte Carlo simulations.
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4. Simulation Studies. To study the performance of the methods introduced above we
consider four simulation settings: a simple one, to ensure that these comparisons are not compli-
cated by the simulation setup; a more complicated one, to study the four methods under a more
sophisticated variable dependence structure; a survival analysis setting to allow comparisons
beyond a linear regression setup; and a complex longitudinal setting where time-dependent
confounding (affected by prior treatment) is present, to allow comparisons to our data analysis
in Section 5.

Setting 1: We simulate a normally distributed variable X1 with mean 0 and variance 1. We
then define µy = 0 + 0.4X1 and θ = βtrue = (0, 0.4)′. The outcome is generated from N(µy, 2)
and the analysis model of interest is the linear model. Values of X1 are defined to be missing
with probability

πX1(y) = 1− 1

(0.25y)2 + 1
.

With this, about 16% of values of X1 were missing (at random).

Setting 2: The observations for 6 variables are generated using the following normal and bino-
mial distributions: X1 ∼ N(0, 1), X2 ∼ N(0, 1), X3 ∼ N(0, 1), X4 ∼ B(0.5), X5 ∼ B(0.7), and
X6 ∼ B(0.3). To model the dependency between the covariates we use a Clayton Copula [32]
with a copula parameter of 1 which indicates moderate correlations among the covariates. We
then define µy = 3 − 2X1 + 3X3 − 4X5 and θ = βtrue = (3,−2, 0, 3, 0,−4, 0)′. The outcome is
generated from N(µy, 2) and the analysis model of interest is the linear model. Values of X1

and X3 are defined to be missing (at random) with probabilities

πX1(y) = 1− 1

(ay)2 + 1
, πX3(X4) = 1− 1

bX3
4 + 1.05

.

where a and b equate to 0.75 and 0.25 in a low missingness setting (and to 0.4 and 2.5 in a
high missingness setting). This yields about 6% and 14% (45% and 38%) of missing values for
X1 and X3 respectively.

Setting 3: This setting is inspired by the analysis and data in Schomaker et al. [33]. We simulate
X1 ∼ logN(4.286, 1.086) and X2 ∼ logN(10.76, 1.8086). Again, the dependency of the variables
is modeled with a Clayton copula with a copula parameter of 1. Survival times y are simulated
from − log(U)/h0{exp(Xβ)} where U is drawn from a distribution that is uniform on the
interval [0, 1], h0 = 0.1, and the linear predictor Xβ is defined as −0.3 lnX1 + 0.3 log10X2.
Therefore, βtrue = (−0.3, 0.3)′. Censoring times are simulated as − log(U)/0.2. The observed
survival time T is thus min(y, C). Values of X1 are defined to be missing based on the following
function:

πX1(T ) = 1− 1

(0.075T )2 + 1
.

This yields about 8% of missing values.

Setting 4: This setting is inspired by our data analysis from Section 5. We generate longitudinal
data (t = 0, 1, . . . , 12) for 3 time-dependent confounders (Lt = {L1

t , L
2
t , L

3
t }), an outcome (Yt),



BOOTSTRAP INFERENCE WHEN USING MULTIPLE IMPUTATION 7

an intervention (At), as well as baseline data for 7 variables, using structural equation models
[34]. The data generating mechanism and the motivation thereof is described in Appendix B.
In this simulation we are interested in an counterfactual outcome Yt which would have been
observed under 2 different intervention rules d̄j , j = 1, 2, which assign treatment (At) always
or never. We denote these target quantities as ψ1 and ψ2 and their true values are −1.03
and −2.45 respectively. They can be estimated using the sequential g-formula, with bootstrap
confidence intervals, see Appendix A for more details.

Values of L1
t , L

2
t , L

3
t , Yt are set to be missing based on a MAR process as described in

Appendix B. This yields about 10%, 31%, 22% and 44% of missing baseline values, and 10%,
1%, 1%, and 2% of missing follow-up values.

In all 4 settings multiple imputation is utilized with Amelia II under a joint modeling
approach, see Honaker et al. [3] and Section 6 for details. In settings 1-3 the probability of a
missing observation depends on the outcome. One would therefore expect parameter estimates
in a regression model of a complete case analysis to be biased, but estimates following multiple
imputation to be approximately unbiased [35, 36].

We estimate the confidence intervals for the parameters of interest using the aforementioned
four approaches, as well as using the analytic standard errors obtained from the linear model
and the Cox proportional hazards model (method “no bootstrap”) for the first three settings.
The “no bootstrap” method serves therefore as a gold standard and reference for the other
methods. We generate n = 1000 observations, B = 200 bootstrap samples, and M = 10 impu-
tations. Based on R = 1000 simulation runs we evaluate the coverage probability and median
width of the respective confidence intervals.

Results: The computation time for Boot MI was always greater than for MI Boot, for example
by a factor of 13 in the first simulation setting and by a factor of 1.3 in the fourth setting.

In all settings the point estimates for β were approximately unbiased.
Table 1 summarizes the main results of the simulations. Using no bootstrapping yields

estimated coverage probabilities of about 95%, for all parameters and settings, as one would
expect.

Bootstrapping the imputed data (MI Boot, MI Boot [PS]) yields estimated coverage proba-
bilities of about 95% and confidence interval widths which are similar to each other, except for
the high missingness setting of simulation 2. The standard errors for each component of β as
simulated in the 1000 simulation runs were almost identical to the mean estimated standard
errors under MI Boot, which suggests good standard error estimation of the latter approach.
In the first simulation setting the coverage of MI Boot pooled is a bit too low for M = 10
(93%), but is closer to 95% if M is large (M = 20, Figure 1).

Imputing the bootstrapped data (Boot MI, Boot MI [PS]) led to overall good results with
coverage probabilities close to the nominal level, except for the high missingness setting of sim-
ulation 2; however, using the pooled samples led to somewhat higher coverage probabilities and
the interval widths were slightly different from the estimates obtained under no bootstrapping.

Figure 1 shows the coverage probability of the interval estimates for β1 in the first simulation
setting given the number of imputations.

As predicted by MI theory, using multiple imputation needs generally a reasonable amount
of imputed data sets to perform well – no matter whether bootstrapping is used for standard
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Table 1
Results of the simulation studies: estimated coverage probability (top), median confidence intervals width

(middle), and standard errors for different methods (bottom). The bottom panel lists standard errors estimated
from the 1000 point estimates of the simulation (“simulated”) and the mean estimated standard error across

the simulated data sets, for both the analytical standard error (“no bootstrap”) and the bootstrap standard error
(“MI Boot”). All results are based on 200 bootstrap samples and 10 imputations.

Method Setting 1 Setting 2 (low missingness) Setting 3

β1 β1 β2 β3 β4 β5 β6 β1 β2

C
ov

er
a
g
e

P
ro

b
a
b
il
it

y 1) MI Boot (PS) 93% 95% 95% 94% 94% 95% 95% 95% 95%
2) MI Boot 95% 95% 95% 95% 94% 95% 95% 95% 95%
3) Boot MI (PS) 97% 96% 95% 96% 95% 96% 96% 96% 96%
4) Boot MI 94% 94% 94% 94% 94% 94% 94% 94% 94%
5) no bootstrap 95% 95% 95% 95% 95% 95% 96% 95% 95%

M
ed

ia
n

C
I

W
id

th

1) MI Boot (PS) 0.30 0.33 0.33 0.33 0.60 0.68 0.62 0.25 0.31
2) MI Boot 0.31 0.34 0.34 0.34 0.61 0.69 0.63 0.26 0.31
3) Boot MI (PS) 0.35 0.36 0.35 0.35 0.64 0.72 0.66 0.26 0.31
4) Boot MI 0.30 0.33 0.33 0.33 0.60 0.67 0.62 0.24 0.30
5) no bootstrap 0.31 0.34 0.34 0.34 0.61 0.69 0.63 0.25 0.31

S
td

.

E
rr

o
r simulated 0.08 0.09 0.09 0.09 0.16 0.18 0.16 0.06 0.08

no bootstrap 0.08 0.09 0.09 0.09 0.16 0.18 0.16 0.06 0.08
MI Boot 0.08 0.09 0.09 0.09 0.16 0.18 0.16 0.07 0.08

Method Setting 2 (high missingness) Setting 4

β1 β2 β3 β4 β5 β6 ψ1 ψ2

C
ov

er
a
g
e

P
ro

b
a
b
il
it

y 1) MI Boot (PS) 89% 91% 92% 91% 92% 92% 94% 94%
2) MI Boot 91% 93% 94% 94% 94% 94% 94% 94%
3) Boot MI (PS) 96% 97% 98% 98% 97% 98% 94% 94%
4) Boot MI 90% 93% 93% 95% 94% 94% 94% 92%
5) no bootstrap 91% 93% 94% 94% 94% 94% – –

M
ed

ia
n

C
I

W
id

th

1) MI Boot (PS) 0.44 0.40 0.44 0.79 0.87 0.78 0.20 0.21
2) MI Boot 0.48 0.44 0.49 0.87 0.95 0.86 0.20 0.22
3) Boot MI (PS) 0.58 0.51 0.59 1.03 1.12 1.01 0.21 0.23
4) Boot MI 0.47 0.43 0.47 0.84 0.92 0.82 0.20 0.22
5) no bootstrap 0.48 0.44 0.49 0.87 0.95 0.86 – –

S
td

.

E
rr

o
r simulated 0.12 0.11 0.12 0.22 0.24 0.21 – –

no bootstrap 0.12 0.12 0.12 0.22 0.24 0.22 – –
MI Boot 0.12 0.11 0.12 0.22 0.24 0.21 – –

error estimation or not (MI Boot, no bootstrap). Boot MI may perform well even for M < 5,
but the pooled approach has a tendency towards coverage probabilities > 95%. For M = 1 the
estimated coverage probability of Boot MI is too large in the above setting.

Figure 2 offers more insight into the behaviour of ‘Boot MI (PS)’ and ‘MI Boot (PS)’ by
visualizing both the bootstrap distributions in each imputed data set (method MI Boot [PS])
as well as the distribution of the estimators in each bootstrap sample (method Boot MI [PS]):
one can see the slightly wider spectrum of values in the distributions related to ‘Boot MI (PS)’
explaining the somewhat larger confidence interval in the first simulation setting.

More explanations and interpretations of the above results are given in Section 6.

5. Data Analysis. Consider the motivating question introduced in Section 2. We are
interested in comparing mortality with respect to different antiretroviral treatment strategies
in children between 1 and 5 years of age living with HIV. We use data from two big HIV
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Fig 1: Coverage probability of the interval estimates for β1 in the first simulation setting
dependent on the number of imputations. Results related to the complete simulated data, i.e.
before missing data are generated, are labelled “original data”.

treatment cohort collaborations (IeDEA-SA, [37]; IeDEA-WA, [38]) and evaluate mortality for
3 years of follow-up. Our analysis builds on a recently published analysis by Schomaker et al.
[17].

For this analysis, we are particularly interested in the cumulative mortality difference be-
tween strategies (i) ‘immediate ART initiation’ and (ii) ‘assign ART if CD4 count < 350
cells/mm3 or CD4% < 15%’, i.e. we are comparing current practices with those in place in
2006. We can estimate these quantities using the g-formula, see Appendix A for a compre-
hensive summary of our implementation details and assumptions. The standard way to obtain
95% confidence intervals for this method is using bootstrapping. However, baseline data of
CD4 count, CD4%, HAZ, and WAZ are missing: 18%, 28%, 40%, and 25% respectively. We
use multiple imputation (using Amelia II [3]) to impute this data. We also impute follow-up
data after nine months without any visit data, as from there on it is plausible that follow-up
measurements that determine ART assignment (e.g. CD4 count) were taken (and are thus
needed to adjust for time-dependent confounding) but were not electronically recorded, proba-
bly because of clerical and administrative errors. Under different assumptions imputation may
not be needed. To combine the M = 10 imputed data sets with bootstrap estimation (B = 200)
we use the four approaches introduced in Section 3: MI Boot, MI Boot (PS), Boot MI, and
Boot MI (PS).

Three year mortality for immediate ART initiation was estimated as 6.08%, whereas mortal-
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Fig 2: Estimate of β1 in the first simulation setting, for a random simulation run: distribution
of ‘MI Boot (pooled)’ for each imputed dataset (top) and distribution of ‘Boot MI (PS)’ for 50
random bootstrap samples (PS). Point estimates are marked by the black tick marks on the
x-axis.

ity for strategy (ii) was estimated as 6.87%. This implies a mortality difference of 0.79%. The re-
sults of the respective confidence intervals are summarized in Figure 3: the estimated mortality
differences are [−0.34%; 1.61%] for Boot MI (PS), [0.12%; 1.07%] for Boot MI, [−0.31%; 1.63%]
for MI Boot (PS), and [−0.81%; 2.40%] for MI Boot.

Figure 3 shows that the confidence intervals vary with respect to the different approaches:
the shortest interval is produced by the method Boot MI. Note that only for this method the
95% confidence interval does not contain the 0% when estimating the mortality difference, and
therefore suggests a beneficial effect of immediate treatment initiation. The distributions of

θ̂∗b,m for Boot MI (PS) and MI Boot (PS), as well as the distribution of ˆ̄θ∗b for Boot MI, are
also visualized in the figure and are reasonably symmetric.

Figure 4 visualizes both the bootstrap distributions in each imputed data set (method MI
Boot [PS]) as well as the distribution of the estimators in each bootstrap sample (method
Boot MI [PS]). It is evident that the overall variation of the estimates is similar for these two
approaches considered, which explains why their confidence intervals in Figure 3 are almost
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identical. Moreover, and of note, the top panel highlights the large variability of the point
estimates used for the calculation of the MI Boot estimator. The graph indicates a large
between imputation uncertainty of the point estimates, possibly due to the high missingness
and complex imputation procedure. The large confidence interval of MI Boot in Figure 3, based
on formula (3.2), reflects this uncertainty.

Cumulative mortality difference at 3 years

Boot MI (PS)
Boot MI
MI Boot (PS)
MI Boot

−2% −1% 0% 1% 2% 3%

Fig 3: Estimated cumulative mortality difference between the interventions ‘immediate ART’
and ‘350/15’ at 3 years: distributions and confidence intervals of different estimators

In summary, the above analyses suggest a beneficial effect of immediate ART initiation com-
pared to delaying ART until CD4 count < 350 cells/mm3 or CD4% < 15% when using method
3, Boot MI. The other methods produce larger confidence intervals and do not necessarily
suggest a clear mortality difference.

6. Theoretical Considerations. For the purpose of inference we are interested in the
observed data posterior distribution of θ|Dobs which is

P (θ|Dobs) =

∫
P (θ|Dobs,Dmis)P (Dmis|Dobs)dDmis

=

∫
P (θ|Dobs,Dmis)

{∫
P (Dmis|Dobs, ϑ)P (ϑ|Dobs)dϑ

}
dDmis .(6.1)
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Fig 4: Estimated cumulative mortality difference: distribution of ‘MI Boot (PS)’ for each
imputed dataset (top) and distribution of ‘Boot MI (PS)’ for 25 random bootstrap samples
(bottom). Point estimates are marked by the black tick marks on the x-axis.

Please note that ϑ refers to the parameters of the imputation model whereas θ is the quantity
of interest from the analysis model. With multiple imputation we effectively approximate the
integral (6.1) by using the average

P (θ|Dobs) ≈
1

M

M∑
m=1

P (θ|D(m)
mis,Dobs)(6.2)

whereD(m)
mis refers to draws (imputations) from the posterior predictive distribution P (Dmis|Dobs).

MI Boot and MI Boot (PS). The MI Boot method essentially uses rules (3.1) and (3.2) for

inference, where, for a given scalar, the respective variance in each imputed data set V̂ar(θ̂m) is
not calculated analytically but using bootstrapping. This approach will work if the bootstrap
variance for the imputed data set is close to the analytical variance. If there is no analytical
variance, it all depends on various factors such as sample size, estimator of interest, proportion
of missing data, and others. The data example highlights that in complex settings with a lot
of missing data the between imputation variance can be large, yielding conservative interval
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estimates. As well-known from MI theory M should, in many settings, be much larger than
5 for good estimates of the variance [14]. Using bootstrapping to estimate the variance does
not alter these conclusions. Using MI Boot should always be complemented with a reasonably
large number of imputations. This consideration also applies to MI Boot pooled, which –as
seen in the simulations–, can sometimes be even more sensitive to the choice of M .

Boot MI and Boot MI (PS). Boot MI uses D = {Dmis,Dobs} for bootstrapping. Most
importantly, we estimate θ, the quantity of interest, in each bootstrap sample using multiple
imputation. We therefore approximate P (θ|Dobs) through (6.1) by using multiple imputation
to obtain θ̂ and bootstrapping to estimate its distribution – which is valid under the missing
at random assumption.

However, if we simply pool the data and apply the method Boot MI (PS) we essentially
pool all estimates θ̂m,b: with this approach each of the B ×M estimates θ̂m,b serves then as
an estimator of θ (as we do not combine/average any of them). A possible interpretation of
this observation is that each θ̂m,b estimates θ and since this is only a single draw from the
posterior predictive distribution P (Dmis|Dobs) we conduct multiple imputation with M = 1,

i.e. we calculate ˆ̄θMI = 1
1

∑1
m=1 θ̂m,b, B×M times. Such an estimator is statistically inefficient

as we know from MI theory: the relative efficiency of an MI based estimator (compared to the
true variance) is (1 + γ

M )−1 where γ describes the fraction of missingness (i.e. V/(W + V ))
in the data. For example, if the fraction of missingness is 0.25, and M = 5, then the loss of
efficiency is 5% [6]. The lower M , the lower the efficiency, and thus the higher the variance. This
explains the results of the simulation studies: pooling the estimates is inefficient, does therefore
overestimate the variance, and thus leads to confidence intervals with incorrect coverage.

It follows that one typically gets larger interval estimates when using Boot MI (PS) instead
of Boot MI. Similarly, one can decide to use Boot MI with M = 1, which is not incorrect but
often inefficient in terms of interval estimation.

Comparison. General comparisons between MI Boot and Boot MI are difficult because
the within and between imputation uncertainty, as well as the within and between bootstrap
sampling uncertainty, will determine the actual width of a confidence interval. If the between
imputation uncertainty is large compared to between bootstrap sample uncertainty (as, for
example, in the data example [Figure 4]) then MI Boot is large compared to Boot MI. However,
if the between imputation uncertainty is small relative to the bootstrap sampling uncertainty,
then Boot MI may give a similar confidence interval to MI Boot (as in the simulations [Figure
2]).

Another consideration is related to the application of the bootstrap. We have focused on
the percentile method to create confidence intervals. However, it is also possible to create
bootstrap intervals based on the t−distribution. Here, an estimator’s variance is estimated with
the sample variance from the B bootstrap estimates and symmetric confidence intervals are
generated based on an appropriate t-distribution. In fact, MI Boot uses this approach because in

each imputed dataset we estimate the bootstrap variance V̂ar(θ̂m) = (B−1)−1
∑

b(θ̂m,b−
ˆ̄θm,b)

2,
then calculate (3.2), followed by confidence intervals based on a tR distribution, see Section 3.
A similar approach would be possible when applying Boot MI. This method produces B point

estimates ˆ̄θ∗b = M−1
∑

m θ̂
∗
b,m for θ. One could estimate the variance as (B−1)−1

∑
b(

ˆ̄θ∗b −
ˆ̄̄
θ∗)2,

with
ˆ̄̄
θ∗ = B−1

∑
b

ˆ̄θ∗b , and then create confidence intervals based on a t-distribution. This would
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however require that one assumes the estimator to be approximately normally distributed.

Bootstrapping as part of the imputation procedure. For each of the estimators introduced
in Section 3, M proper multiply imputed data sets are needed. “Proper” means that the
application of formulae (3.1) and (3.2) yield 1) approximately unbiased point estimates and
2) interval estimates which are randomization valid in the sense that actual interval coverage
equals the nominal interval coverage. Some imputation algorithms use bootstrapping to create
proper imputations, and this may not be confused with the bootstrapping step after multiple
imputation which we focus on in this paper.

To follow this argument in more detail it is important to understand that proper impu-
tations are created by means of random draws from the posterior predictive distribution of
the missing data given the observed data (or an approximation thereof). These draws can (i)
either be generated by specifying a multivariate distribution of the data (joint modeling) and
simulate the posterior predictive distribution with a suitable algorithm; or (ii) by specifying
individual conditional distributions for each variable Xj given the other variables (fully condi-
tional modeling) and iteratively drawing and updating imputed values from these distributions
which will then (ideally) converge to draws of the theoretical joint distribution; or (iii) by the
use of alternative algorithms.

An example for (i) is the EMB algorithm from the R-package Amelia II which assumes a
multivariate normal distribution for the data, D ∼ N(µ,Σ) (possibly after suitable transfor-
mations beforehand). Then, B bootstrap samples of the data (including missing values) are
drawn and in each bootstrap sample the EM algorithm [39] is applied to obtain estimates
of µ and Σ which can then be used to generate proper multiple imputations by means of the
sweep-operator [40, 11]. Of note, the algorithm can handle highly skewed variables by imposing
transformations on variables (log, square root). Categorical variables are recoded into dummy
variables based on the knowledge that for binary variables the multivariate normal assumption
can yield good results [9].

An example for (ii) is imputation by chained equations (ICE, mice). Here, (a) one first speci-
fies individual conditional distributions (i.e. regression models) p(Xj |X−j , θj) for each variable.
Then, (b) one iteratively fits all regression models and generates random draws of the coeffi-

cients, e.g. β̃ ∼ N(β̂, Ĉov(β̂)). Values are (c) imputed as random draws from the distribution
of the regression predictions. Then, (b) and (c) are repeated k times until convergence. The
process of iteratively drawing and updating the imputed values from the conditional distribu-
tions can be viewed as a Gibbs sampler that converges to draws from the (theoretical) joint
distribution. This method is among the most popular ones in practice and has been imple-
mented in many software packages [4, 5]. However, there remain theoretical concerns as a joint
distribution may not always exist for a given specifications of the conditional distributions [41].
A variation of (c) is a fully Bayesian approach where the posterior predictive distribution is
used to draw imputations. Here, the bootstrap is used to model the imputation uncertainty
and to draw the M imputations needed for the M imputed data sets. This variation yields
approximate proper imputations and is implemented in the R library Hmisc [42].

An example for (iii) is the Approximate Bayesian Bootstrap [29]. Here, the (cross-sectional)
data is stratified into several strata, possibly by means of the covariates of the analysis model.
Then, within each stratum (a) one draws a bootstrap sample among the complete data (with
respect to the variable to be imputed). Secondly, (b) one uses the original data set (with missing
values) and imputes the missing data based on units from the data set created in (a), with
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equal selection probability and with replacement. The multiply imputed data are obtained by
repeating (a) and (b) M times.

It is evident from the above examples that many imputation methods use bootstrap method-
ology as part of the imputation model, that this does not replace the additional bootstrap step
needed for the inference in the analysis model, and that – if they are combined – the resampling
steps are nested.

7. Conclusion. The current statistical literature is not clear on how to combine boot-
strap with multiple imputation inference. We have proposed that a number of approaches are
intuitively appealing and three of them are correct: Boot MI, MI Boot, MI Boot (PS). Us-
ing Boot MI (PS) can lead to too large and invalid confidence intervals and is therefore not
recommended.

Both Boot MI and MI Boot are probably the best options to calculate randomization valid
confidence intervals when combining bootstrapping with multiple imputation. As a rule of
thumb, our analyses suggest that the former may be preferred for small M or large imputation
uncertainty and the latter for normal M and little/normal imputation uncertainty.

There are however other considerations when deciding between MI Boot and Boot MI. The
latter is computationally much more intensive. This matters particularly when estimating the
analysis model is simple in relation to creating the imputations. In fact, in our first simulation
this affected the computation time by a factor of 13. However, MI Boot naturally provides sym-
metrical confidence intervals. These intervals may not be wanted if an estimator’s distribution
is suspected to be non-normal.

APPENDIX A: DETAILS OF THE G-FORMULA IMPLEMENTATION

We consider n children studied at baseline (t = 0) and during discrete follow-up times (t =
1, . . . , T ). The data consists of the outcome Yt, an intervention variable At, q time-dependent
covariates Lt = {L1

t , . . . , L
q
t}, and a censoring indicator Ct. The covariates may also include

baseline variables V = {L1
0, . . . , L

qV
0 }. The treatment and covariate history of an individual i

up to and including time t is represented as Āt,i = (A0,i, . . . , At,i) and L̄st,i = (Ls0,i, . . . , L
s
t,i)

respectively. Ct equals 1 if a subject gets censored in the interval (t − 1, t], and 0 otherwise.
Therefore, C̄t = 0 is the event that an individual remains uncensored until time t.

The counterfactual outcome Y āt = Y āt
t refers to the hypothetical outcome that would have

been observed at time t if every subject had received, likely contrary to the fact, the treatment
history Āt = āt. Similarly, Lātt are the counterfactual covariates related to the intervention
Āt = āt. The above notation refers to static treatment rules; a treatment rule may however
depend on covariates, and in this case it is called dynamic. A dynamic rule d̄(āt,i; L̄t,i) assigns
treatment At,i ∈ {0, 1} as a function of the covariate history L̄t,i and the intervention vector
āt,i may therefore vary by subject i. The counterfactual outcome related to a dynamic rule d̄ is

Y
d̄(āt,i;Lt,i)
t,i = Y d̄

t,i, and the counterfactual covariates are Ld̄t,i. Often Āt,i = (Āt,i, C̄t,i = 0) which

means that one is interested in the counterfactuals for intervention Āt,i under (the intervention
of) no censoring. In our notation, for simplicity, a rule d̄ can be dynamic and intervene on
multiple variables, including the censoring mechanism, without referring to it explicitly, i.e. d̄
may relate to d̄(āt,i, c̄t,i; L̄t,i). We write ād̄t,i for the intervention history individual i received

under rule d̄.
In our setting we study n = 5826 children for t = 0, 1, 3, 6, 9, . . . where the follow-up time
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points refer to the intervals (0, 1.5), [1.5, 4.5), [4.5, 7.5), . . ., [28.5, 31.5), [31.5, 36) months re-
spectively. Follow-up measurements, if available, refer to measurements closest to the middle of
the interval. In our data Yt refers to death at time t (i.e. occurring during the interval (t−1, t]).
At refers to antiretroviral treatment (ART) taken at time t. Lt = (L1

t , L
2
t , L

3
t , L

1m
t , L2m

t , L3m
t )

are CD4 count, CD4%, and weight for age z-score (WAZ, which serves as a proxy for WHO
stage, see [43] for more details) as well as three indicator variables whether these variables
have been measured at time t or not. V = LV0 refer to baseline values of CD4 count, CD4%,
WAZ, height for age z-score (HAZ) as well as sex, age, and region. The two treatment rules of
interest are:

d̄1
t,i =

{
ct,i = 0; l1mt,i = l2mt,i = l3mt,i = 1; at,i = 1 for ∀t, i

d̄2
t,i =

{
ct,i = 0; l1mt,i = l2mt,i = l3mt,i = 1; at,i = 1 if CD4 countd̄t,i < 350 or CD4%d̄

t,i < 15%

ct,i = 0; l1mt,i = l2mt,i = l3mt,i = 1; at,i = 0 otherwise

The quantity of interest is thus cumulative mortality after T = 36 months, under (the inter-
vention of) no censoring, regular 3 monthly follow-up and for treatment assignment according
to d̄j , that is ψ =

∑T
t=1 P(Y d̄

t = 1).

Under the assumption of consistency, i.e. Y d̄ = Y if Āt = ād̄t,i and L̄d̄t = L̄t if Āt−1 = ād̄t−1,i,

sequential conditional exchangeability (or no unmeasured confounding), i.e. Y d̄
∐
At|L̄t, Āt−1

for ∀Āt = ād̄t , L̄t = l̄t, t ∈ {0, . . . , T} and positivity, i.e. P (At = ād̄t |L̄t = l̄t, Āt−1 = ād̄t−1) > 0 for

∀t, ād̄t , l̄t with P (L̄t = l̄t, Āt−1 = ād̄t−1) 6= 0, the g-computation formula can estimate ψ as:

ψ =
T∑
t=1

P(Y d̄
t = 1) =

T∑
t=1

∫
l̄∈L̄t


P(Yt = 1|Āt−1 = ād̄t−1,i, L̄t = l̄t, Yt−1 = 0)×
T∏
t=1

f(Lt|Āt−1 = ād̄t−1,i, L̄t−1 = l̄t−1, Yt−1 = 0)

 d̄l(A.1)

see [23] and [44] about more details and implications of the representation of the g-formula in
this context. Note that the inner product of (A.1) can be written as

T∏
t=1

q∏
s=1

f(Lst |Āt−1= ād̄t−1,i, L̄t−1= l̄t−1,L
1
t= l1t , . . . , L

s−1
t = ls−1

t , Ȳt−1= 0) .

In the above representation of the g-formula we assume that the time ordering is L1
t → L2

t →
L3
t → A/C → Y .
There is no closed form solution to estimate (A.1), but θ can be approximated by means of

the following algorithm; Step 1: use additive linear and logistic regression models to estimate the
conditional densities on the right hand side of (A.1), i.e. fit regression models for the outcome
variables CD4 count, CD4%, WAZ, and death at t = 1, 3, .., 36 using the available covariate
history and model selection. Step 2: use the models fitted in step 1 to stochastically generate
Lt and Yt under a specific treatment rule. For example, for rule (ii), draw L1

1 =
√

CD4 count1

from a normal distribution related to the respective additive linear model from step 1 using
the relevant covariate history data. Set A1 = 1 if the generated CD4 count at time 1 is < 350
cells/mm3 or CD4% < 15% (for rule d̄2). Use the simulated covariate data and treatment
as assigned by the rule to generate the full simulated data set forward in time and evaluate
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cumulative mortality after 3 years of follow-up. We refer the reader to [17], [23], and [44] to
learn more about the g-formula in this context.

Note that the so-called sequential g-formula, used in the simulation study, shares the idea
of standardization in the sense that one sequentially marginalizes the distribution with respect
to L given the intervention rule of interest. It is just a re-expression of (A.1) where integration
with respect L is not needed [45]:

E(Y d̄
T ) = E(E( . . .E(E(YT |ĀT = ād̄T , L̄T )|ĀT−1 = ād̄T−1, L̄T−1 ) . . . |Ā0 = ād̄0, L̄0 )|L̄0 ) .(A.2)

APPENDIX B: DATA GENERATING PROCESS IN THE SIMULATION STUDY

Both baseline data (t = 0) and follow-up data (t = 1, . . . , 12) were created using struc-
tural equations using the R-package simcausal [34]. The below listed distributions, listed in
temporal order, describe the data-generating process. Baseline data refers to region, sex, age,
CD4 count, CD4%, WAZ and HAZ respectively (V 1, V 2, V 3, L1

0, L2
0, L3

0, Y0). Follow-up data
refers to CD4 count, CD4%, WAZ and HAZ (L1

t , L
2
t , L

3
t , Yt), as well as an antiretroviral treat-

ment (At) and censoring (Ct) indicator. For simplicity, no deaths are assumed. In addition
to Bernoulli (B), uniform (U) and normal (N) distributions, we also use truncated normal
distributions which are denoted by N[a,b] where a and b are the truncation levels. Values which
are smaller a are replaced by a random draw from a U(a1, a2) distribution and values greater
than b are drawn from a U(b1, b2) distribution. Values for (a1, a2, b1, b2) are (0, 50, 5000, 10000)
for L1, (0.03, 0.09, 0.7, 0.8) for L2, and (−10, 3, 3, 10) for both L3 and Y . The notation D̄ means
“conditional on the data that has already been measured (generated) according the the time
ordering”. The distributions are listed in Figure 5

The data generating process leads to the following baseline values: region A = 75.5%; male
sex = 51.2%; mean age = 3.0 years; mean CD4 count = 672.5; mean CD4% = 15.5%; mean
WAZ = -1.5; mean HAZ = -2.5. At t = 12 the arithmetic mean of CD4 count, CD4%, WAZ
and HAZ are 1092, 27.2%, -0.8, -1.5 respectively. The target quantities ψ1 and ψ2 are defined
as the expected value of Y at time T , under no censoring, for a given treatment rule d̄j , where

d̄1
t,i = {ct,i = 0; at,i = 1 for ∀t, i and d̄2

t,i = {ct,i = 0; at,i = 0 for ∀t, i

and are −1.03 and −2.45 respectively. Missing baseline and follow-up data were created based
on the following functions:

π(L1
t ) = 0.1;

π(L2
0)(L

1
0) = 1− 1

(0.001 · L1
0)2 + 1

; π(L2
t )(t, L

1
t ) = 1− 1

(0.00005 · t · L1
t )

2 + 1
;

π(L3
0)(Y0) = 1− 1

(0.2 · |Y0|)2 + 1
; π(L3

t )(t, Yt) = 1− 1

(0.015 · t · |Yt|)2 + 1
;

π(Y0)(L
3
0) = 1− 1

(0.7 · |L3
0|)2 + 1

; π(Yt)(t, L
3
t ) = 1− 1

(0.015 · t · |L3
t |)2 + 1

.
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