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Positivity violations challenge the estimation of the causal dose-response e A novel diagnostic tool—the non-overlap ratio—to detect positivity

curve mstndard . 4 Y. a1+ E(Y?). Existing solutions, such as projection violations for continuous interventions.

functions [1] or modified treatment policies [2], can address this issue but e A data-adaptive solution, specifically a most feasible intervention

may yield estimands misaligned with the original research question, reducing strategy to address positivity violations while maintaining interpretabil-

interpretability. y ity. y

Step 1: Determine positivity violations Step 2: Find most feasible intervention
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Our simulation studies show that the most feasible intervention reduces absolute bias compared to standard and trimming approaches under positivity violations
(Figure 3). In regions where positivity violations are absent, the proposed approach can recover the standard estimand.

Using data from the CHAPAS-3 trial of HIV-positive children in Zambia and Uganda [3, 4], we examine how counterfactual viral failure probabilities vary with
efavirenz concentrations (EFV, mg/L) at t = 36 weeks. Non-overlap ratios (Figure 4) are low within the central EFV range (1-3.5 mg/L), enabling reliable
causal estimation. At boundaries (< 1 or > 3.5 mg/L), ratios rise, indicating strong positivity violations, with sharp increases near 0 mg/L. Figure 5 shows
causal curves across coverage levels; higher coverage level tolerates more violations, while instability in trimming estimands arises under severe violations.
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The proposed diagnostic measure provides an effective tool for identifying positivity violations. The central idea of the intervention strategy is to adhere as
closely as possible to the true causal dose-response curve, deviating only when the oracle target intervention is infeasible based on the available data. In such
cases, the strategy substitutes the intervention with the most feasible alternative, maintaining interpretability and mitigating potential bias.
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