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Abstract
Traditionally model averaging has been viewed as an alternative to model selec-
tion with the ultimate goal to incorporate the uncertainty associated with the model
selection process in standard errors and confidence intervals by using a weighted
combination of candidate models. In recent years, a new class of model averaging
estimators has emerged in the literature, suggesting to combine models such that the
squared risk, or other risk functions, are minimized.We argue that, contrary to popular
belief, these estimators do not necessarily address the challenges induced by model
selection uncertainty, but should be regarded as attractive complements for themachine
learning and forecasting literature, as well as tools to identify causal parameters. We
illustrate our point by means of several targeted simulation studies.

Keywords Model selection · Model averaging · Prediction · Machine learning ·
Causal inference

1 Background

Regression models are the cornerstone of statistical analyses. The motivation for their
use is diverse: they might (a) be purely descriptive, (b) target prediction and fore-
casting problems, (c) help identifying associations or (d) even causal parameters.
The motivation for variable selection in regression models is based on the rationale
that associational relationships between variables are best understood by reducing
the model’s dimension. An example would be regression growth models for which a
multitude of variables are potentially relevant to describe the relationships in the data
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(Sala-I-Martin et al. 2004). The problem with this approach is that in finite samples (i)
the regression parameters after model selection are often biased and (ii) the respective
standard errors are too small because they do not reflect the uncertainty related to
the model selection process (Leeb and Pötscher 2005; Burnham and Anderson 2002;
Hjort and Claeskens 2003).

A wave of publications in the 1990s (Chatfield 1995; Draper 1995; Hoeting et al.
1999) proposed that the drawback of model selection can be overcome by model
averaging. With model averaging one calculates a weighted average of the parameter
estimates of a set of candidate models, for example using regression models with a dif-
ferent set of included variables. The weights are determined in such a way that ‘better’
models receive a higher weight. For example, models with a lower AIC may receive
a higher weight (Buckland et al. 1997). The variance of these type of estimators is
typically calculated such that both the variance related to the parameters of eachmodel
and the variance between the different model estimates is taken into account. Note that
this approach tackles problem (ii), the incorporation of model selection uncertainty
into the standard errors of the regression parameters; but it may not necessarily tackle
problem (i) as the regression parameters may still be biased. In fact, model averaging
estimators behave similarly to shrinkage estimators because regression coefficients
which belong to variables which are not supported among many candidate models are
shrunk and are therefore possibly biased. The obvious conclusion is that model aver-
aging is useful to identify associations in regression models and yields more realistic
confidence intervals than model selection does. It can therefore serve as a descriptive
and exploratory tool in data analysis and be applied in the context of (a) and (c).

However, the pitfalls of this classical model averaging scheme are clear: the esti-
mators produced by a classical weight choice are not optimal from a statistical point
of view. The weights are chosen such that one gets improved standard errors. But
ideally the weights of an estimator would also result in an averaged estimator which
minimizes a risk function, for example the squared risk with respect to some func-
tion of μ (at least asymptotically). This may yield an estimator with good properties,
potentially even with good predictive abilities. These type of estimators are known as
‘optimal model averaging’ (OMA) estimators and were mostly inspired by the sem-
inal paper of Hansen (2007). He considered a set of nested regression models and
proposed to choose weights such that the weighted estimator minimizes a criterion
similar to Mallow’s Cp. With this, the weights are constructed such that the mean
squared prediction error is small, therefore one obtains a good bias–variance tradeoff
as well as other properties, for example an (asymptotically) optimal estimator based on
definitions common in the model averaging literature. The construction of Hansen’s
estimator corresponds to motivation (b) outlined above. It is no surprise that other
authors then also developed optimal model averaging estimators—based on the same
idea, but in the context of different model classes, different loss/risk functions, differ-
ent model sets, and so on—see Cheng et al. (2015), Gao et al. (2016), Hansen (2008),
Hansen and Racine (2012), Liang et al. (2011), Liu and Kuo (2016), Liu et al. (2016),
Zhang et al. (2014, 2015, 2016b) and the references therein. The interesting part is
that the authors of these papers, with few exceptions (e.g. Zhang et al. 2015, 2016b),
often motivate their estimators by saying that the purpose for their construction is to
overcome the problems of model selection and to include the uncertainty associated
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with the model selection process. This is surprising as the methodology developed by
Hansen and others does not tackle (ii) as needed for (a) and (c), but is rather geared
towards (b). Moreover, the construction of confidence intervals is typically not dis-
cussed in these papers (but see Zhang and Liu 2017 on interval estimation). Our paper
is motivated by this misunderstanding.

We argue that there are at least two different schools of model averaging, each
with their own justification and benefit. However, the recent developments in the
literature in finding an optimal model averaging estimator should not be confused
with the original motivation of ‘correcting’ model selection estimates to include the
uncertainty of the model selection process. The motivation of model selection and
model averaging originates from the attempts to understand associational structures in
models of moderate-to-high dimension (see items (a) and (c)). Optimal model average
estimators should rather be seen as additional tools for statistical forecasting and
learning problems (see item (b)).

In this paper we are going to demonstrate several points concerning the relationship
and differences between different model averaging schemes:

– We investigate the coverage probability of selected popular model averaging esti-
mators. While recently there has been a moderate interest in understanding the
construction of confidence intervalswhen applyingmodel averaging (Kabaila et al.
2016; Wang and Zhou 2012; Schomaker and Heumann 2014; Turek and Fletcher
2012; Fletcher and Dillingham 2011), this topic has been rather under-researched;
in particular, it remains unclear how standardmodel-averaged confidence intervals
perform in terms of coverage, and how this compares to naive intervals after model
selection.

– We undertake simulation studies to compare different model averaging approaches
under different motivating questions; i.e explanatory, predictive and causal ques-
tions of interest.

– We demonstrate that optimal model averaging can be successfully incorporated
into ‘super learning’, a recently proposed data adaptive approach which combines
several learners to improve predictive performance.

– Motivated by the above point, we show that OMA can complement procedures
which identify causal effects, such as the sequential g-formula. We therefore show
that OMA may be of interest even in the context of (d).

– Moreover, we have implemented optimal model averaging estimators in such a
way that they can be used easily for super learning and in causal inference.

All above points are meant to understand and illustrate under which circumstances the
use of optimal model averaging has benefits, and when this is not the case.

2 Methodological framework

Below we review the methods discussed and evaluated in the remainder of this paper.
Section2.1 introduces criterion based model averaging whereas Sects. 2.2, 2.3 and
2.4 introduce optimal model averaging estimators. Section2.5 describes the concept
of super learning. The description of the below methods is brief on purpose, as the
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contribution of this paper relates to comparison of optimal and traditional model
averaging schemes by discussion and simulation.

Consider n observations for which both a response vector y = (y1, . . . , yn)′ and
a covariate matrix X = (x1′, . . . , xn ′)′, xi = (xi1, . . . , xip), are available. Each vari-
able of X is denoted as X j = (x1 j , . . . , xnj )′. To relate the response with a set of
explanatory variables one could use a (regression) model Mκ = f (y|X;β) for which
the parameter vector β has to be estimated. If we consider a set of candidate models,
M = {M1, . . . , Mk}, for describing y based on varying combinations of X j ’s, then a
model selection procedure chooses one single ‘best’ model out of the setM; typically
based on some criterion, for example Akaikes Information Criterion (AIC, Akaike
1973; Rao and Wu 2001).

2.1 Criterion basedmodel averaging

With criterion based model averaging, one calculates a weighted average ˆ̄β =∑
κ wκβ̂κ from the k estimators β̂κ (κ = 1, . . . , k) of the set of candidate (regression)

modelsMwhere the weights are calculated in a way such that ‘better’ models receive
a higher weight. A popular weight choice would be based on the exponential AIC,

wAIC
κ = exp(− 1

2AICκ)
∑k

κ=1 exp(− 1
2AICκ)

, (1)

where AICκ is the AIC value related to model Mκ ∈ M (Buckland et al. 1997). It has

been suggested to estimate the variance of the scalar ˆ̄β j ∈ ˆ̄β via

V̂ar( ˆ̄β j ) =
{

k∑

κ=1

wκ

√

V̂ar(β̂ j,κ |Mκ) + (β̂ j,κ − ˆ̄β j )
2

}2

, (2)

where β̂ j,κ is the j th regression coefficient of the κth candidate model. While formula
(2) from Buckland et al. (1997) is the most popular choice to calculate standard errors
in model averaging, it has also been criticized that the coverage probability of interval
estimates based on (2) may not always reflect the nominal level (Hjort and Claeskens
2003).

From the Bayesian perspective the quality of a regression model Mκ ∈ M may be
judged upon the estimated posterior probability that this model is correct, that is

Pr(Mκ |y) ∝ Pr(Mκ)

∫

Pr(y|Mκ , βκ) · Pr(βκ |Mκ) dβκ, (3)

where Pr(Mκ) is the prior probability for the model Mκ to be correct, Pr(y|Mκ , βκ) =
L(β) represents the likelihood, and Pr(βκ |Mκ) reflects the prior density of βκ when
Mκ is the model under consideration. Since, for a large sample size, Pr(Mκ |y) can be
approximated via the Bayes-Criterion of Schwarz (BCS, BIC), it is often suggested
that the weight
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wBIC
κ = exp(− 1

2BICκ)
∑k

κ=1 exp(− 1
2BICκ)

, (4)

should be used for the construction of the Bayesian model averaging estimator. The
BIC corresponds to −2L(β̂) + p ln n, where p corresponds to the number of parame-

ters. The variance of ˆ̄β j can be estimated in various (similar) ways, depending on the
assumptions about the priors and the practical approach of solving the integral in (3).
Broadly, variance estimation is based on variance decomposition such as the law of
total variance, i.e. using

V̂ar( ˆ̄β j ) = ÊM(V̂ar(β̂ j,κ |y, Mκ )) + V̂arM(̂E(β̂ j,κ |y, Mκ )), (5)

see also Draper (1995). Practically, this yields similar, but not identical results as
(2). Based on the above variance estimates, Bayesian credibility intervals can be con-
structed.

There are many variations and subtleties when it comes to the implementation of
the above estimators. For example, for computational feasibility, one may restrict the
number of candidate models. Reviews on frequentist and Bayesian model averaging
can be found in Wang et al. (2009) and Hoeting et al. (1999).

2.2 Mallow’s model averaging

Hansen considers a situation of k nested linear regression models for k variables. Let

β̂κ be the estimated regression parameter of model Mκ , and ˆ̄β = ∑k
κ=1 wκβ̂κ be

a model averaging estimator with μ̂w = Xk
ˆ̄β. Based on similar thoughts as in the

construction of Mallow’s Cp (Mallows 1973), Hansen suggests to minimize the mean
squared (prediction) error [MSPE] by minimizing the following criterion:

C̃ p = (y − Xk
ˆ̄β)′(y − Xk

ˆ̄β) + 2σ 2Kw, (6)

where Kw = tr (Pw), Pw = ∑k
κ=1 wκ Xκ(X ′

κ Xκ)−1X ′
κ and σ 2 is the variance which

needs to be estimated from the full model. Consequently, theweight vectorw is chosen
such that C̃ p is minimized

wMMA = arg min
w∈H

C̃ p, (7)

withH = {w = (w1, . . . , wk) ∈ [0, 1]k : ∑k
κ=1 wκ = 1}. Model averaging based on

the weight choice (7) is often called Mallow’s model averaging (MMA). MMA has
beneficial properties, i.e. it minimizes the MSPE and is asymptotically optimal, see
Hansen (2007, Theorem 1, Lemma 3) for more details. Moreover, it has been shown
that the MMA estimator has a smaller MSE than the OLS estimator (Zhang et al.
2016a).
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Since the first part of (6) is quadratic in wκ and the second one linear, one can
obtain the model averaging estimator by means of quadratic programming.

The assumptions of a discreteweight set and nested regressionmodels sound restric-
tive, but it has been shown that both assumptions are not necessarily required andMMA
can be applied to non-nested regression models as well; given that this is computa-
tionally feasible (Wan et al. 2010).

2.3 Jackknife model averaging

JacknifeModel Averaging (JMA) as proposed by Hansen and Racine (2012) for linear
models, builds on leave-one-out (LOO) cross validation. For Model Mκ the LOO
residual vector is ε̃κ = y − ŷκ , with ŷκ = xκ

i (Xκ ′
(−i)X

κ
(−i))

−1Xκ ′
(−i)y(−i) where the

index (−i) describes that the respective matrix excludes observation i , i = 1, . . . , n. It
can be shown that there is a simple algebraic relationshipwhich allows the computation
of the LOO residuals in one rather than n operations:

ε̃κ = Dκ ε̂κ (8)

where ε̂κ is the standard least squares residual vector y − Pκ y with the hat matrix
P = X(X ′X)−1X ′; and Dκ is a n × n diagonal matrix with Dii,κ = (1 − Pii,κ )−1,
i = 1, . . . , n.

For k candidate models the linear weighted LOO residuals are ε̃w = ∑
κ wκ ε̃κ ,

κ = 1, . . . , k. An estimate of the true expected squared error is CVw = n−1ε̃′
wε̃w and

an appropriate weight choice would thus be

wJMA = arg min
w∈H

CVw, (9)

As with MMA, the weights can be obtained with quadratic programming. The
estimator has similar properties as the MMA estimator (Hansen and Racine 2012).
Model averaging with the weight choice (9) is called Jackknife Model Averaging.

2.4 Lasso averaging

Shrinkage estimation, for example via the LASSO (Tibsharani 1996), can be used
for model selection. This requires the choice of a tuning parameter which comes
with tuning parameter selection uncertainty. LASSO averaging estimation (LAE), or
more general shrinkage averaging estimation (Schomaker 2012), is a way to combine
shrinkage estimators with different tuning parameters.

Consider the LASSO estimator for a simple linear model:

β̂LE(λ) = arg min

⎧
⎪⎨

⎪⎩

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

xi jβ j

⎞

⎠

2

+ λ

p∑

j=1

|β j |

⎫
⎪⎬

⎪⎭
. (10)
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The complexity parameter λ ≥ 0 tunes the amount of shrinkage and is typically
estimated via the generalized cross validation criterion or any other cross validation
criterion. The larger the value of λ, the greater the amount of shrinkage since the
estimated coefficients are shrunk towards zero.

Consider a sequence of candidate tuning parameters λ = {λ1, . . . , λL}. If each
estimator β̂LE(λi ) obtains a specific weight wλi , then a LASSO averaging estimator
takes the form

ˆ̄βLAE =
L∑

i=1

wλi β̂LE(λi ) = wλ B̂LE, (11)

where λi ∈ [0, c], c > 0 is a suitable constant, B̂LE = (β̂LE(λ1), . . . , β̂LE(λL))′ is the
L × p matrix of the LASSO estimators, wλ = (wλ1 , . . . , wλL ) is an 1 × L weight
vector, wλ ∈ W and W = {wλ ∈ [0, 1]L : 1′wλ = 1}.

A general measure for the cross validation error with squared loss function would
be

OCVk = n−1ε̃κ (w)′ε̃κ (w) ∝ wλE
′
k Ekwλ

′, (12)

where Ek = (ε̃k(λ1), . . . , ε̃k(λL)) is the n × L matrix of the k-fold cross-validation
residuals for the L competing tuning parameters. An optimal weight vector for this
criterion is then

wLAE = arg min
w∈W

OCVk . (13)

These weights can also be calculated with quadratic programming. More details
can be found in Schomaker (2012).

2.5 Super learning

Depending on the specific problem, optimal model averaging as described in the above
sections may be a good prediction algorithm or not. To choose and combine the best
prediction methods, super learning can be used. Super learning means considering a
set of prediction algorithms, for example regression models, shrinkage estimators or
model averaging. Instead of choosing the algorithm with the smallest cross validation
error, super learning chooses a weighted combination of different algorithms, that is
the weighted combination which minimizes the cross validation error. It can be shown
that this weighted combination will perform (asymptotically) at least as good as the
best algorithm, if not better (Van der Laan et al. 2008) and is known as the oracle
property of super learning.

For example: consider Learner 1 (L1) to be a linear model including all available
covariates and learner 2 (L2) to be Mallow’s model averaging. Both of them have a
specific k-fold cross-validation error, for a given loss function, that is CVL1

k and CVL2
k .

Now, find the linear combination of the two predictions from L1 and L2 that best
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predicts the outcome. This can be achieved by non-negative least squares estimation,
as (for the abovementioned oracle property to hold) theweights need to be positive and
sumup to one. Thefinal prediction algorithm is then theweighted linear combination of
the two learners. The cross validation error of this combination is then asymptotically
at least as low (and therefore good) as the errors CVL1

k and CVL2
k .

The interested reader is referred to Van der Laan and Petersen (2007) and Van der
Laan and Rose (2011), and the references therein, for more details.

3 Simulation studies

The purpose of this section is to contrast simple traditional model averaging, both
frequentist and Bayesian as described in Sect. 2.1 with optimal model averaging as
described in Sects. 2.2, 2.3 and 2.4 for different situations. The first setting described
in Sect. refsec:simspslinear targets linear regression settings motivated by (a) and (c),
i.e. those where regression is meant to describe associational relationships. The next
Sect. 3.2 targets (b), that is the use of regression for prediction. Finally, in Sect. 3.3,
we look at longitudinal data for which (d), i.e. the identification of a causal effect, is
of interest.

3.1 Associations in a linear regressionmodel

In this setup,we compare different estimators of a linear regressionmodel: the ordinary
least squares estimate of the full model [OLS], the model selection estimates of the
model selected by AIC [MS], traditional model averaging estimates based on the
weight choices (1) [FMA] and (4) [BMA], and Mallow’s model averaging estimates
based on the weight choice (7) [MMA]. We selected the above estimators because
they reflect the most popular approaches in the literature. Additionally, for BMA, we
follow the implementation from the R-package BMA (Raftery et al. 2017), which uses
a subset of candidate models based on a leaps and bounds algorithm in conjunction
with “Occam’s razor”, see Hoeting et al. (1999) for more details. Frequentist model
averaging is based on all possible candidate models, model selection is based on those
models selected by stepwise selection with AIC, and optimal model averaging on the
set of nested models. Variance estimates for FMA and MMA are based on (2), and
those of BMA are based on (5). Confidence intervals were constructed using critical
values from a standard normal distribution, as often done in naive regression analyses.

The setup of our simulation is as follows: We generate ten variables (sample size:
n = 500) using normal, log-normal and exponential distributions: X1,X2,X3,X4 ∼
N(0, 1), X5,X6,X7 ∼ logN(0, 0.5), X8,X9,X10 ∼ Exp(1). To model the depen-
dency between the covariates we use a Clayton Copula (Yan 2007) with a copula
parameter of 1 which indicates moderate correlation among the covariates. We then
defineμy = 1X3+2X4+3X5+3X6+2X7+1X8+0.5X9 and generate the outcome
from N (μy, exp(2)). Therefore, seven out of ten variables have an effect of different
size on y.
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We compare the point estimates of the five approaches in terms of unbiasedness.
Secondly, we compare estimated standard errors for model averaging estimators) with

those obtained from the simulation study (i.e. based on the variance of ˆ̄β over the
R = 5000 simulation runs). Thirdly, we evaluate the coverage probability of the
respective 95% interval estimates.

3.2 Forecasting

This setup targets prediction accuracy. We generate ten variables (sample size: n =
500) using again normal, log-normal and exponential distributions:X1,X2,X3,X4 ∼
N(0, 1), X5,X6,X7 ∼ logN(0, 0.5), X8,X9,X10 ∼ Exp(1). To model the depen-
dency between the covariates we again use a Clayton Copula with a copula parameter
of 1.We then defineμy = −5+0.5X2+1.5X6+1.5X9+X6×X9+X2

2 and generate
the outcome from N (μy, exp(1.5)). Therefore, three out of ten variables predict y and
both interactions and non-linear associations are present.

We evaluate the mean squared prediction error for the same methods evaluated in
Sect. 3.1, i.e. OLS,MS, FMA, BMA, andMMA. In addition we evaluate the predictive
performance of super learning with two different types of learner sets: the first one
(SL) consists of the OLS of the full linear model, random forests (Breiman 2001),
stepwise regression based on AIC, the LASSO, the arithmetic mean, GLM’s based on
EM-algorithm-Bayesian model fitting (Gelman and Su 2016), additive models (Wood
2006), and the full linear model with interactions, with and without model selection
with AIC. The second learner set (SL+) consists of all learners from the first set, but
adds Jacknife model averaging, Lasso averaging and Mallows model averaging to
the learner set. All of these estimators are fitted (i) with the full set of variables, (ii)
with the full set plus all two-way interactions and (iii) with the full set plus squared
transformations of all variables. For Lasso Averaging we used a λ-sequence of length
100, where the maximum λ-value is the smallest value for which all coefficients are
zero, theminimumλ value is 0.0001, and all otherλ-values are equally spaced between
these two (on a log-scale). While this is a common approach (Friedman et al. 2010),
alternative sequences can be easily specified in common software packages, such as
the R-package glmnet.

In this simulation, both the mean squared prediction error as well as the choice of
learners from the super learner algorithm are of interest. The simulation is based on
5000 runs.

3.3 Causal inference

This simulation is inspired by the HIV treatment analyses of Schomaker andHeumann
(2018) andSchomaker et al. (2016).Wegenerate longitudinal data (t = 0, 1, . . . , 6) for
3 time-dependent confounders (Lt = {L1

t , L
2
t , L

3
t }), an outcome (Yt ), an intervention

(At ), as well as baseline data at t = 0 for 7 variables, using structural equation
models (Sofrygin et al. 2017). The data generating mechanism is described in detail
in “Appendix C”. In this simulation we are interested in the expected counterfactual
outcome at the end of follow-up (i.e. t = 6) which would have been observed under
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2 different intervention rules d̄ j , j = 1, 2, which assign treatment (At ) either always
(at each time point) or depending on the confounders, i.e. At = 1 if L1

t < 350 or

L2
t < 15%or L3

t < −2; that iswewant to estimate E(Y
d̄ j
6 ) [see “AppendixB” formore

details regarding notation]. We denote these target quantities as ψ1 and ψ2 and their
true values are−1.80 and−2.02 respectively. They can be estimated using appropriate
methodology, for example using the sequential g-formula; see “Appendix B” for more
details. Briefly, for each point in time, i.e. t = 6, . . . , 1, 0, the conditional outcome
given the covariate history needs to be estimated. To avoid model mis-specification, it
is common to use super learning for this. We use super learning with two different sets
of learners. The first one consists of the OLS of the full linear model, the arithmetic
mean, stepwise regression based on AIC, GLM’s based on EM-algorithm-Bayesian
model fitting, additive models, and linear models with interactions. The second learner
set consists of all learners from the first set, but adds Jacknife Model Averaging, Lasso
Averaging (as specified in Sect. 3.2) and Mallows Model Averaging to the learner set.
All of these estimators are fitted (i) with the full set of variables, (ii) with the full set
plus all two-way interactions and (iii) with the full set plus squared transformations
of all variables. The simulation is based on 1000 runs.

This simulation compares bias and coverage with respect to the two different learn-
ers and interventions respectively; moreover, we are particularly interested whether
super learning, applied in a complex longitudinal setup, picks optimal model aver-
aging estimators for the fitting process or not. This point is not immediately clear
as simple learners, such as additive models and GLM’s with interaction, are already
complex enough to model the data-generating process described in “Appendix C”.
Whether a weighted combination including OMA is of benefit is the motivation of
this simulation.

3.4 Results

The results of the first simulation study are summarized in Table1.
As expected the OLS is approximately unbiased, whereas the other estimators

are not necessarily unbiased, particularly around the small effects of β3, β8 and β9
(Table 1a). This simple but important property is often neglected in themodel averaging
literature. One reason might be that optimality in the model selection literature is
typically defined to be either consistency (choosing, asymptotically, the correct model
out of a set of candidatemodels—given that the candidatemodel is contained in the set)
or efficiency (the selectedmodel minimizes, asymptotically, a risk function—based on
the assumption of a true model of infinite dimension). See Leeb and Pötscher (2008)
for more details.

Table 1b contrasts the average estimated standard errors with those obtained from
the simulations, i.e. the variance of the point estimates over the 5000 simulation runs.
Ideally they should be as close as possible. It can be seen that the estimated standard
errors are appropriate for the OLS estimator, and too small for themodel selection esti-
mator. This highlights the problems of model selection uncertainty. Model averaging
by means of using AIC weights performs much better, addressing the issues related
to model selection, but there is a tendency towards over-conservativeness, rather than
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over-confidence. Bayesian model averaging, with a restricted set of candidate models
based on the approach explained earlier, produces less variability and does not seem
to produce very accurate standard errors, though they are still somewhat superior to
model selection. MMA obviously does not perform very well when it comes to esti-
mating the standard errors of β9 and β10; this is because of its nested model setup, but
also because the approach of using (2) for variance estimation is rather pragmatic. As
highlighted before, MMA has been developed for point estimation. However, where
computationally feasible, the performance of MMA can potentially be improved by
using the set of all (i.e. non-nested) models, and possibly by also using bootstrapping
for confidence interval estimation. In our setting, this improved coverage for those
variables which were specified to be in a rear position, i.e. coverage for β9 improved
from 60 to 88% and coverage of β8 improved from 90 to 91%; but often the quadratic
programming problem required minor modifications of the first part of (6) to be solv-
able.

A look at the coverage probabilities reveals the problems of both model selection
and model averaging: particularly for the small effects the actual coverage is way
below the nominal coverage. This is not necessarily surprising because the distribution
of model averaging estimators can be non-normal (Hjort and Claeskens 2003). To
solve this problem re-sampling may be a viable option (Schomaker and Heumann
2014), though there are valid theoretical concerns around this as well (Pötscher 2006).
Alternatively, one may simply use the OLS interval estimates of the full model as they
are asymptotically equivalent to the estimator from Hjort and Claeskens (2003), see
Wang and Zhou (2012) for more details.

The results of the second simulation study are summarized in Table 2.
It can be clearly seen that model averaging and model selection cannot improve the

mean squared prediction error in this setting. However, super learning provides much

Table 2 Results of the second simulation study

OLS MS FMA BMA MMA SL SL+

(a) Predictive performance

MSPE 22.38 22.34 31.72 22.36 22.39 21.47 21.12

SE 1.45 1.45 3.09 1.46 1.45 1.41 1.39

Learner Weight Learner Weight Learner Weight

(b) Choice of learners

MMA 0.0002 LAE 0.0022 JMA 0.0002

MMA (+Int.) 0.0038 LAE (+Int.) 0.1032 JMA (+Int.) 0.0044

MMA (+squ.) 0.1588 LAE (+squ.) 0.3405 JMA (+squ.) 0.1588

GLM (Bayes) 0.0000 GLM (+AIC) 0.0366 GLM (+Int.) 0.0174

Random forest 0.0357 LASSO 0.0024 GLM (+AIC/Int.) 0.0870

Mean 0.0001 GLM 0.0001 GAM 0.0138

(a) Estimated mean squared prediction error, with standard error, for different model selection and model
averaging techniques. Prediction with super learning contains both a set of learners with optimal model
averaging techniques (SL+) and without (SL). (b) The weight for each learner, averaged over the simulaton
runs, is listed as well
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better predictive accuracy. In particular, super learning using optimal model averaging
(SL+) has the best overall performance.

In the second simulation the most heavily utilized learners are Lasso averaging
including squared variables, as well as JMA and MMA with transformations. As
expected, optimal model averaging can help to improve predictive accuracy, in partic-
ular when used in conjunction with super learning.

The results of the third simulation study are summarized in Table 3 and Fig. 1.
It can be seen that in a complex longitudinal setup, with six follow-up times, and
a data-generating process which includes non-linearities and interactions, a couple
of learners contribute most to the estimation process; that is, additive models, MMA
with squared transformations and JMAwith squared transformations, aswell as simple
GLM’s. This implies that even when learners are available which already describe the
data-generating process well (here: GAM’s and GLM’s with interactions), optimal
model averaging can still be utilized by super learning and thus be of benefit.

Model mis-specification is a crucial concern when identifying causal parameters
(Van der Laan and Rose 2011) and this is the motivation for using super learning in
this context. In our example, bias after estimation still exists, for both interventions of
interest (Table 3). Using optimal model averaging has only a small benefit in terms of
reducing bias in this particular setting.

Table 3 Results of the third
simulation study: bias and
coverage for different sets of
learners and different
interventions

Intervention Learner set Bias Coverage (%)

Always Without OMA 0.036 90

Always With OMA 0.036 91

350/15%/−2 Without OMA 0.12 97

350/15%/−2 With OMA 0.10 97

Intervention 1: always Intervention 2: 350/15/−2

seq. g−formula seq. g−formula
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1.00
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w
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L 01: mean

L 02: GLM

L 03: GLM (Bayes)

L 04: GLM (+AIC)

L 05: GLM (+interactions)

L 06: GAM

L 07: MMA

L 08: MMA (+interactions)

L 09: MMA (+ squared trans.)

L10: JMA

L11: JMA (+interactions)

L12: JMA (+ squared trans.)

L13: LAE

L14: LAE (+interactions)

L15: LAE (+ squared trans.)

Fig. 1 Results of the third simulation study: the weight for each learner, averaged over the simulation runs
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4 Conclusion

Model averaging in its traditional sense addresses the problem of model selection
uncertainty. Because model averaging can still yield biased estimates and imperfect
coverage, its main benefit is in identifying associations in a moderate-to-large data
set. Such a procedure can also be helpful in an explorative data analysis. However,
these estimators would not necessarily be the first choice for quantifying associations
as exactly as possible, for complex prediction problems, or for estimation procedures
which seek to identify causal parameters.

In contrast, optimal model averaging as proposed in the recent years may not be
ideal to take into account model selection uncertainty as their construction principle
is not based on interval estimation. However, the idea of optimal model averaging
is attractive in analyses which deal with prediction and forecasting problems. Some
of these estimators, such like Mallow’s model averaging, are computationally effi-
cient, robust, and tackle predictions from a different angle. This may benefit existing
approaches, such as super learning, where a broad spectrum of learners are required.
Super learning techniques are a popular tool in the process of identifying a causal
quantity of interested by means of targeted maximum likelihood estimation (Gruber
and van der Laan 2012; Petersen et al. 2014). Therefore, the benefit of optimal model
averaging techniques may reach far beyond pure prediction problems and play its role
in causal analyses.

Our recommendation is that future manuscripts that propose optimal model averag-
ing techniques focus their motivation and data examples around prediction (or the use
of prediction in estimating causal quantities) rather than model selection uncertainty
questions.

Appendix A: Software

We have implemented Mallow’s model averaging, Jackknife model averaging, and
Lasso averaging in the R-package MAMI (Schomaker 2017a), available at http://
mami.r-forge.r-project.org/. In addition to this, we have implemented several wrap-
pers that make optimal model averaging easily useable for super learning (Polley
et al. 2017), and in conjunction with causal inference packages such as tmle (Gru-
ber and van der Laan 2012) and ltmle (Lendle et al. 2017). Available wrappers are
explained by calling listSLWrappers(), and examples are given in the documen-
tation (Schomaker 2017b).

Appendix B: Notation and background on the sequential g-formula

Consider a sample of size n of which measurements are available both at baseline
(t = 0) and during a series of follow-up times t = 1, . . . , T . At each point in
time we measure the outcome Yt , the intervention At , time-dependent covariates
Lt = {L1

t , . . . , L
q
t }, and a censoring indicator Ct . Lt may include baseline vari-

ables V = {L1
0, . . . , L

qV
0 } and can potentially contain variables which refer to the
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outcome variable before time t , for instance Yt−1. The treatment and covariate history
of an individual i up to and including time t is represented as Āt,i = (A0,i , . . . , At,i )

and L̄s
t,i = (Ls

0,i , . . . , L
s
t,i ) respectively. Ct equals 1 if a subject gets censored in the

interval (t − 1, t], and 0 otherwise. Therefore, C̄t = 0 is the event that an individual
remains uncensored until time t .

The counterfactual outcome Y āt
t,i refers to the hypothetical outcome that would

have been observed at time t if subject i had received, possibly contrary to the fact, the
treatment history Āt,i = āt . Similarly, Lāt

t,i are the counterfactual covariates related

to the intervention Āt,i = āt . The above notation refers to static treatment rules;
a treatment rule may, however, depend on covariates, and in this case it is called
dynamic. A dynamic rule dt (L̄t ) assigns treatment At,i ∈ {0, 1} as a function of the
covariate history L̄t,i . The vector of decisions dt , t = 0, . . . , T , is denoted as d̄T = d̄.
The notation Āt = d̄ refers to the treatment history according to the rule d̄. The
counterfactual outcome related to a dynamic rule d̄ is Y d̄

t,i , and the counterfactual

covariates are Ld̄
t,i .

In Sect. 3.3 we consider the expected value of Y at time 6, under no censoring, for
a given treatment rule d̄ to be the main quantity of interest, that is ψ = E(Y d̄

6 ).
The sequential g-formula can estimate this target quantity by sequentiallymarginal-

izing the distribution with respect to L given the intervention rule of interest. It holds
that

E(Y d̄
T ) = E(E( . . .E(E(YT | ĀT = d̄T , L̄T )| ĀT−1 = d̄T−1, L̄T−1 ) . . . | Ā0 = d0,L0 )|L0 ),

see for example Bang and Robins (2005). Equation (14) is valid under several assump-
tions: sequential conditional exchangeability, consistency, positivity and the time
ordering Lt → At → Ct → Yt . These assumptions essentially mean that all con-
founders need to bemeasured, that the intervention is well-defined and that individuals
have a positive probability of continuing to receive treatment according to the assigned
treatment rule, given that they have done so thus far and irrespective of the covariate
history; see Daniel et al. (2013) and Robins and Hernan (2009) for more details and
interpretations. Note that the two interventions defined in Sect. 3 also assign Ct = 0
meaning that we are interested in the effect estimate under no censoring.

To estimateψ one needs to the the following for t = T , . . . , 0: (i) use an appropriate
model to estimate E(YT | ĀT−1 = d̄T−1, L̄T ). The model is fit on all subjects that are
uncensored (until T − 1). Note that the outcome refers to the measured outcome for
t = T and to the prediction (of the conditional outcome) from step (ii) if t < T . Then,
(ii) plug in Āt = d̄t to predict Yt at time t ; (iii) For t = 0 the estimate ψ̂ is obtained
by calculating the arithmetic mean of the predicted outcome from the second step.

Appendix C: Data generating process in the simulation study

Both baseline data (t = 0) and follow-up data (t = 1, . . . , 12) were created using
structural equations using the R-package simcausal (Sofrygin et al. 2017). The
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below listed distributions, listed in temporal order, describe the data-generating process
motivated by the analysis from Schomaker et al. (2016). Baseline data refers to region,
sex, age, CD4 count, CD4%, WAZ and HAZ respectively (V 1, V 2, V 3, L1

0, L
2
0, L

3
0,

Y0), see Schomaker et al. (2016) for a full explanation of variables and motivational
question. Follow-up data refers to CD4 count, CD4%,WAZ andHAZ (L1

t , L
2
t , L

3
t , Yt ),

as well as a treatment (At ) and censoring (Ct ) indicator. In addition to Bernoulli (B),
uniform (U ) and normal (N ) distributions, we also use truncated normal distributions
which are denoted by N[a,b] where a and b are the truncation levels. Values which
are smaller a are replaced by a random draw from aU (a1, a2) distribution and values
greater than b are drawn from a U (b1, b2) distribution. Values for (a1, a2, b1, b2) are
(0, 50, 5000, 10000) for L1, (0.03,0.09,0.7,0.8) for L2, and (−10, 3, 3, 10) for both L3

and Y . The notation D̄ means “conditional on the data that has already been measured
(generated) according the the time ordering”.

For t = 0:

V 1 ∼ B(p = 4392/5826)

V 2|D̄ ∼
{
B(p = 2222/4392) if V 1 = 1
B(p = 758/1434) if V 1 = 0

V 3|D̄ ∼ U (1, 5)

L1
0|D̄ ∼

{
N[0,10000](650, 350) if V 1 = 1
N[0,10000](720, 400)) if V 1 = 0

L̃1
0|D̄ ∼ N ((L1

0 − 671.7468)/(10 · 352.2788) + 1, 0)

L2
0|D̄ ∼ N[0.06,0.8](0.16 + 0.05 · (L1

0 − 650)/650, 0.07)

L̃2
0|D̄ ∼ N ((L2

0 − 0.1648594)/(10 · 0.06980332) + 1, 0)

L3
0|D̄ ∼

⎧
⎪⎪⎨

⎪⎪⎩

N[−5,5](−1.65 + 0.1 · V 3 + 0.05 · (L1
0 − 650)/650

+ 0.05 · (L2
0 − 16)/16, 1) if V 1 = 1

N[−5,5](−2.05 + 0.1 · V 3 + 0.05 · (L1
0 − 650)/650

+ 0.05 · (L2
0 − 16)/16, 1)) if V 1 = 0

A0|D̄ ∼ B(p = 0)

C0|D̄ ∼ B(p = 0)

Y0|D̄ ∼ N[−5,5](−2.6 + 0.1 · I (V 3 > 2) + 0.3 · I (V 1 = 0) + (L3
0 + 1.45), 1.1)

For t > 0:

L1
t |D̄ ∼

⎧
⎪⎪⎨

⎪⎪⎩

N[0,10000](13 · log(t · (1034 − 662)/8) + L1
t−1 + 2 · L2

t−1
+ 2 · L3

t−1 + 2.5 · At−1, 50) if t ∈ {1, 2, 3, 4}
N[0,10000](4 · log(t · (1034 − 662)/8) + L1

t−1 + 2 · L2
t−1

+ 2 · L3
t−1 + 2.5 · At−1, 50) if t ∈ {5, 6}

L2
t |D̄ ∼ N[0.06,0.8](L2

t−1 + 0.0003 · (L1
t − L1

t−1) + 0.0005 · (L3
t−1) + 0.0005 · At−1 · L̃1

0, 0.02)

L3
t |D̄ ∼ N−5,5(L

3
t−1 + 0.0017 · (L1

t − L1
t−1) + 0.2 · (L2

t − L2
t−1) + 0.005 · At−1 · L̃2

0, 0.5)

At |D̄ ∼
⎧
⎨

⎩

B(p = 1) if At−1 = 1
B(p = 1/(1 + exp(−[−2.4 + 0.015 · (750 − L1

t ) + 5 · (0.2 − L2
t )

− 0.8 · L3
t + 0.8 · t]))) if At−1 = 0

Ct |D̄ ∼ B(p = 1/(1 + exp(−[−6 + 0.01 · (750 − L1
t ) + 1 · (0.2 − L2

t ) − 0.65 · L3
t − At ])))
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Yt |D̄ ∼ N[−5,5](Yt−1 + 0.00005 · (L1
t − L1

t−1) − 0.000001 ·
(

(L1
t − L1

t−1) ·
√

L̃1
0

)2

+ 0.01 · (L2
t − L2

t−1) − 0.0001 ·
(

(L2
t − L2

t−1) ·
√

L̃2
0

)2

+ 0.07 · ((L3
t − L3

t−1) · (L3
0 + 1.5135)) − 0.001 · ((L3

t − L3
t−1) · (L3

0 + 1.5135))2

+ 0.005 · At + 0.075 · At−1 + 0.05 · A[t] · A[t − 1], 0.01)
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