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Abstract

Some causal parameters are defined on subgroups of the observed data, such as the average
treatment effect on the treated and variations thereof. We explain how such parameters
can be defined through parameters in a marginal structural (working) model. We illustrate
how existing software can be used for doubly robust effect estimation of those parameters.
Our proposal for confidence interval estimation is based on the delta method. All concepts
are illustrated by estimands and data from the data challenge of the 2022 American Causal
Inference Conference.

Keywords: Average Treatment Effect on the Treated, Marginal Structural Models, Data
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1. Methodology and Motivation

1.1 Background and Estimands

A common estimand in causal inference is the average treatment effect on the treated (ATT);
that is, the difference in expected outcomes had everyone been treated versus had everyone
not been treated, for those units that actually received the treatment. This may be useful
when evaluating whether an intervention actually worked among those who received it. If Y
is the outcome, Z the binary intervention and Y Z=z = Y z denotes the respective potential
outcomes, then the ATT is defined as

ATT = E(Y 1|Z = 1)− E(Y 0|Z = 1) . (1)

In some longitudinal (i.e. panel) settings, we can also define meaningful ATT’s. We
consider estimands, data and setups from the data challenge of the 2022 American Causal
Inference Conference. The units in the simulated data refer to patients within primary care
practices. Second-layer units are the practices themselves because each practice decides
whether to join the binary intervention Z, or not. In the illustrations of this paper, we
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only work in this second layer where patient specific covariates (potential confounders) are
available as averages for each practice. The data consist of four time points, t = 1, 2, 3, 4
years. We thus have covariates, the intervention and the outcome measured at multiple
time points and denote those variables with Xt, Zt and Yt, respectively. The baseline time
point is actually t = 3 as the intervention is only implemented as of the third year. In
the given setting Z does not vary over time, i.e. Z = 1 means Z3 = 1 and Z4 = 1. We
write Z = (1, 1) to indicate that the intervention occurs at both t = 3 and t = 4. Broadly,
relevant estimands include

ψ3 = E(Y 1
3 |Z = 1)− E(Y 0

3 |Z = 1) and ψ4 = E(Y
(1,1)
4 |Z = 1)− E(Y

(0,0)
4 |Z = 1) . (2)

This means one is interested in the differences in the expected outcome (monthly Medi-
care expenditures, averaged over all patients per practice) if all practices joined the inter-
vention versus if they did not join, both at year 3 and year 4. In the data challenge, the
sample ATT is of interest, i.e. the ATT defined on the the simulated subpopulation rather
than a superpopulation: we use the asterix (∗) to refer to this population, which may be
of different size at year 3 and 4. The primary estimand is the weighted average of the two
sample ATT’s at year 3 and 4,

ψ =
1

N
(n3ψ

∗
3,w + n4ψ

∗
4,w) , (3)

where the subscript w indicates a weighted expectation, with weights given by the
number of patients per practice; and n3 and n4 are the total number of patients in the
intervention group in year 3 and year 4, respectively (n3 + n4 = N).

In addition to the usual identification assumptions of consistency, positivity and condi-
tional exchangeability, one has to assume conditional exchangeability related to a patient
selection indicator as one conditions on those patients that are available at each time point
(not every patient is available in the data at each time point). We ignore this point in both
the notation and discussions however. Secondary estimands relate to estimands in the spirit
of (3), but conditional on subgroups defined through pre-intervention variables Xi. That
is, we may replace ψ3 with

ψ3,Xi=xi = E(Y 1
3 |Z = 1, Xi = xi)− E(Y 0

3 |Z = 1, Xi = xi)

and then define conditional weighted sample ATT’s similar to (3).

1.2 Defining ATT’s through Parameters in Marginal Structural Models

In marginal structural models (MSMs), one describes the counterfactual quantity of interest
as a parametric function of intervention strategies and baseline variables, where appropriate:

E(Y Z=z|X = x) = fβ(Z,X) .

In non-saturated models, where the relationship is unknown, one may speak of “working
models” to highlight the speculative nature of the assumed parametric relationship. As
an example, consider the estimands of the data challenge introduced above: here, the
decision whether a practice joins the intervention is made before time 3 and can thus be
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considered “baseline”. We denote this intervention decision with Z. At time 3 and 4 we
can hypothetically intervene at each time point. We denote the intervention at these time
points through Āt = (A3, A4). In the given example, we are interested only in (1, 1) and
(0, 0) – and not (1, 0) and (0, 1). We can define a MSM as follows:

E(Y Āt=āt |Z = z) = β0 + β1A+ β2Z + β3A · Z . (4)

where A = 1 if Āt = (1, 1) and A = 0 if Āt = (0, 0). The variable A is thus a so-called
summary measure of the binary longitudinal intervention. More generally, A is a discrete
variable where each category relates to a summary of a particular longitudinal intervention
rule of binary variables. Based on this MSMs we can define, for instance, the following
estimand:

E(Y (1,1)|Z = 1) = β0 + β1 · 1 + β2 · 1 + β3 · 1 · 1 ,

Similarly,

E(Y (0,0)|Z = 1) = β0 + β2 .

The MSM thus allows us to express estimands in the spirit of (2) through the model
parameters. Note that we have a saturated model because there are 4 parameters and 4
quantities defined through the two binary variables A and Z. Of course, we can more gen-
erally fit MSMs conditional on baseline covariates, time and combine the model parameters
as appropriate to represent quantities of interest:

E(Y Āt=āt |X = x, T = t) = fβ(Āt,X, t) . (5)

Remark: We can use MSMs to also define the ATT of equation (1) for a single time
point. Consider the ordered data (Z,X, A, Y ): here, both Z and A are identical but we
intervene only on A whereas Z is a baseline indicator defining the subgroups on which to
condition on (i.e. the treated, or controls). The relevant MSM would then have to include
both A and Z, as well as their interaction. This allows to define the ATT by setting Z = 1,
setting A first as 1, then as 0 and calculating the difference. The simulation in Appendix
4.5 illustrates this point in detail and shows its validly.

Remark: In the longitudinal setup, we work with an assumed time ordering of the data
of (X1, Y1,X2, Y2, Z,A3,X3, Y3, A4,X4, Y4), see Appendix 4.1 for details.

1.3 Estimation through Targeted Maximum Likelihood Estimation

A popular approach of fitting MSMs is through inverse probability of treatment weighting
(Fewell et al., 2004). However, there also exist doubly robust approaches of estimating
MSMs; that is, through (longitudinal) targeted maximum likelihood estimation (LTMLE),
see Petersen et al. (2014). Briefly, estimating counterfactual expected outcomes for binary
longitudinal interventions (e.g., E(Y āt)) through longitudinal TMLE (van der Laan and
Gruber, 2012) requires the evaluation of nested conditional expectations by fitting models
for the (conditional) outcome, at each time point, to facilitate a standardization process with
respect to time-varying confounders. Additionally, both censoring and treatment mecha-
nisms need to be estimated at each time point to implement a targeted step that uses the
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information contained in the propensity scores of the respective time points to correct the
initial estimates obtained through standardization, if needed. LTMLE has the advantage
over inverse probability weighted methods that it allows the incorporation of machine learn-
ing methods while retaining valid statistical inference, under assumptions (Van der Laan
and Rose, 2011; Schomaker et al., 2019; Luque Fernandez et al., 2018). Fitting MSMs with
LTMLE requires a refined targeted update step at each time point, estimating the counter-
factual quantities for all interventions and time points of interest, stacking all the relevant
counterfactual outcome vectors on top of each other, along with the respective information
on intervention rules and time points to be able to generate a targeted fit of an MSM in
the spirit of (5). More details can be found in Petersen et al. (2014). The approach is
implemented in the R-package ltmle (Lendle et al., 2017).

Remark: There are differences between doubly robust estimation of the sample ATT and
the standard ATT: while the former is not identifiable from the observed data, doubly robust
approaches such as TMLE can still yield asymptotically unbiased and efficient estimates of
sample parameters. We refer the interested reader to Balzer et al. (2016).

Point Estimation

We return to the data example and show how to fit the MSM specified in (4). The data
are explained in Appendix 4.1. We can use the function ltmleMSM() of the package ltmle
(Lendle et al., 2017). This just requires specifying the dataset (which needs to adhere to
a time-ordering), the outcome, confounder and treatment variables, as well as optionally
censoring variables. Specifying the intervention through an MSM requires i) the specifica-
tion of the MSM itself under the option working.msm, ii) the actual interventions under
regimes, as well as iii) an array that connects the specified interventions to information
about time and summary measures of the binary longitudinal interventions. In our case,
the summary measure is simply a binary indicator for the two interventions of interest
(see Bell-Gorrod et al. (2020), Petersen et al. (2014) and the references therein for more
sophisticated examples). The below box shows the code of fitting the MSM.

1 # Interventions of interest: (1,1) and (0,0)

2 regimesList <- list(function(row) c(1,1),

3 function(row) c(0,0))

4

5 # Defining ‘summary measures ’ for the two interventions and ‘time ’

6 my.sum.measures <- array(c(c(1,0),c(1,1),

7 c(1,0),c(2,2))

8 ,dim=c(2,2,2),dimnames=list(NULL ,c("A","time"),NULL))

9

10 # Estimating MSM with ltmleMSM ()

11 # Note: Lnodes and learning libraries have already been defined

12 # (see GitHub repo)

13 m_1 <- ltmleMSM(dwide ,

14 Anodes=c("A.3","A.4"),

15 Lnodes=L_nodes ,

16 Ynodes=c("Y.3","Y.4"), survivalOutcome=F,

17 Qform=NULL , gform=NULL , stratify=FALSE ,

18 SL.library=ll, variance.method="tmle",

19 final.Ynodes=c("Y.3","Y.4"),

20 regimes=regimesList ,
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21 working.msm="Y ~ A * Z",

22 summary.measures=my.sum.measures ,

23 observation.weights=

24 (dwide$n.patients .3+ dwide$n.patients .4)/2
25 )

26

27 # Getting estimate of (S)ATT through parameter combination

28 # Note: Retransformation is needed as continuous outcomes

29 # are transformed to lie in [0,1] for quasibinomial model

30 a<-attr(m_1$transformOutcome ,"Yrange")[1]
31 b<-attr(m_1$transformOutcome ,"Yrange")[2]
32 SATT <- (invlogit(t(c(1,1,1,1))%*%m_1$beta)*(b-a)+a) -

33 (invlogit(t(c(1,0,1,0))%*%m_1$beta)*(b-a)+a)
34 # Note: invlogit <- function (x){1/(1 + exp(-x))}

It is important to highlight that for continuous outcomes ltmle transforms the continuous
outcome to lie in the interval [0, 1], based on bounds defined through the minimum and
maximum observed outcome values. This is done for reasons of stability, robustness, to
guarantee that outcomes outside the observed range are not predicted and the that statis-
tical model is respected – as well as practical considerations such as appropriate modeling
of heavily skewed or multimodal continuous outcomes (Gruber and van der Laan, 2010).
The transformation does not affect the properties of the targeted ML estimator. Thus, to
obtain the final point estimates, we have not only to combine the parameters of the MSMs
appropriately but also retransform the outcome on the original scale by using the logit
function together with the bounds defined through the minimum and maximum observed
outcome values, see bottom lines of code and section on interval estimation below.

The above code essentially estimates ψ∗
4,w because we first set both Z = 1 and A = 1

and then calculate the difference compared to setting Z = 1, but A = 0. The same code,
with a modified MSM, can be used for other estimands, e.g. those that depend on baseline
covariates and time. If we wanted to estimate ATT’s conditional on time and X3, we may
simply use working.msm="Y ∼ A*Z*X3*time" and combine the estimated MSM parameters
appropriately. The Github repository (see Appendix) gives more details on this.

Remark: In the above code, we use observation weights to reflect the different number
of patients per practice.

Remark: Above, we essentially estimate ψ∗
4,w. To correctly estimate ψ, addding time

to the MSM would be needed.

Remark: Instead of using the function ltmleMSM, we may use the function ltmle, see
Appendix 4.4 for an illustration. This has the advantage of using easier code, but has
the disadvantage that confidence intervals for the ATT can not be easily obtained and an
implementation of the parameter specific influence function may be needed (Van der Laan
and Rose, 2011).
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Interval Estimation

Our estimands are nonlinear combinations of parameters of MSMs. In the above example,
for instance, we model ψ4 by making use of the MSM:

P (ỹi = 1|xi, zi, t) = h(ηi) =
exp(ηi)

1 + exp(ηi)
=

1

1 + exp(−ηi)
.

where Ỹ = (Y −a)/(b−a) and a, b are bounds of the outcome defined through the minimum
and maximum observed outcome values. The linear predictor for observation i is ηi =
β0 + β1xi1 + · · ·+ β3xi3 = x′

iβ , i = 1, 2, . . . , n, and β = (β0, β1, . . . , β3)
′ is a column vector

of the coefficients. In the main example, X1 = A,X2 = Z,X3 = AZ. To estimate ψ4 we
have to use the parameter combination{(

exp(β0 + β1 + β2 + β3)

1 + exp(β0 + β1 + β2 + β3)

)
× (b− a) + a

}
−
{(

exp(β0 + β2)

1 + exp(β0 + β2)

)
× (b− a) + a

}
.

One option to approximate the standard error of the estimates of the non-linear com-
binations of parameters is using the Delta-Method. We have written a generic function
(msm.se, Appendix 4.3) that calculates the standard error from an ltmleMSM object. It
requires a specification on how the MSM’s parameters should be combined. This allows the
construction of confidence intervals:

1 se_SATT <- msm.se(m_1,b1=c(1,1,1,1),b2=c(1,0,1,0))

2 # -> (beta0+beta1+beta2*beta3) - (beta0+beta2)

3 SATT_lower <- SATT - qnorm (0.95)*(se_SATT/sqrt(dim(dwide)[1])) # 90% CI

4 SATT_upper <- SATT + qnorm (0.95)*(se_SATT/sqrt(dim(dwide)[1])) # 90% CI

The estimated covariance matrix, used as part of applying the delta method, can either be
based on standard influence curve approaches, or on a robust approach that directly targets
the asymptotic variance of the efficient influence curve (Tran et al., 2018). The latter is
known to be more robust, but is not available in ltmleMSM for continuous outcomes. Our
function can make use of both covariance matrices, if available. More details on the delta
method and influence curve can be found in the literature (Zepeda-Tello et al., 2022).

1.4 Machine Learning Approach

As described in Section 1.3, we use TMLE for estimating the parameters of the MSM. To
reduce the risk of model misspecification, our data-adaptive estimation approach considers
a variety of learning and screening algorithms, both for the outcome and the treatment
mechanisms (at each time point). The two sets, i.e. the screening and learning algorithms,
were combined based on both computational and contextual considerations. Details can be
found in Appendix 4.2 and the GitHub repository, and are inspired by the experiences of
previous analyses (Baumann et al., 2021, Gehringer et al., 2018). Each screening-learning
pair served as a candidate for the super learner (Van der Laan et al., 2007).

Prior to estimation, we transformed allX variables (see Appendix 4.1 for details on those
variables) by means of the natural logarithm to stabilize the variance and higher moments
of the confounders’ distribution. This facilitated the stability of the numerical optimization
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during the estimation as well as the robustness of the variable screening. We assessed the
robustness of the variable screening by adding small perturbations to the X variables and
could therefore ensure that the variable selection process under those perturbations was
essentially identical to the variable screening without perturbations. However, we did not
use these perturbations for our final model. Furthermore, we added gaussian noise variables
to the set of X variables to check if the results were impaired, but excluded the noise in the
final estimation process.

2. Data Challenge Results

2.1 Point Estimates and Bias

Figure 1 shows the distribution of our estimated ATT’s across the 3400 data sets that were
part of the data challenge, both for year 3 and 4 (i.e. ψ̂∗

3,w and ψ̂∗
4,w). The name of our

submission was MSM+.

µ = 14.7 µ = 29.8

Year 3 Year 4

−300 −200 −100 0 100 −300 −200 −100 0 100

0.00

0.01

0.02

0.03

ATT

D
en

si
ty

Figure 1: Kernel density estimates of the ATT distribution across 3400 estimates for the
3400 data generating processes. The blue vertical line shows the mean (µ) of the corre-
sponding distribution. The red line indicates the mean across the 3400 true values.

It can be seen that our estimates were somewhat biased: our estimated ATTs were
generally higher than the true effects. The mean absolute bias was about 15US$ for year 3
and 30US$ for year 4. Similar patterns could be observed for other estimands, i.e. estimands
that condition on baseline covariates as well as ψ. This bias can be explained as follows:

1. We included time in an MSM that estimated ψ3,w and ψ4,w, but not in the MSM’s that
estimated ψ or estimands conditional on baseline variables. We did thus not target
the exactly right estimand because each model should contain time – as otherwise one
cannot estimate the ATT seperately for each year and take the (weighted) average
over those years, as required for most estimands of interest. It can be speculated that
for the primary estimand ψ this explains up to about (29.8$−14.7$)/2 = 7.55$ of the
bias (under equal patient numbers in years 3 and 4). This is because we estimated
ψ̂∗

4,w instead of ψ, as remarked and explained above; had we included ψ̂∗
3,w and
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taken the weighted average of ψ̂∗
3 and ψ̂∗

4, as required by (3), then the overall mean
absolute bias would have been lower, as the bias with respect to ψ∗

3,w is lower (see
Figure 1).

2. We used patient numbers, i.e. practice size, as observation weights when fitting the
MSM. The data generating processes, which used practice sizes to define effect het-
erogeneity, suggests that it may have been a viable option to include those numbers
additionally as covariates, if technically feasible. Another concern is that we used
the average patient numbers from years 3 and 4 as weights and could not distinguish
between sample sizes in different years in the required wide data format.

3. The standard ltmleMSM setup uses so-called “empirical weights” when fitting the
MSM, which means that regimes with greater data support receive greater weight
(i.e. A = 0 versus A = 1). This specific weight function does in principle affect the
definition of the estimand (and should have been set to NULL instead).

Compared to other submissions, our average bias was neither particularly low, nor par-
ticularly high.

2.2 Coverage

The coverage of our confidence intervals was always well below the required nominal 90%
coverage level. This may be explained as follows:

1. Given that our estimates were biased, it would –in any case– be unlikely to achieve
nominal coverage.

2. For continuous outcomes, ltmleMSE can not provide the TMLE-based (robust) co-
variance matrix, only the standard IC-based covariance matrix. As highlighted in
Section 1.3, discussed in Tran et al. (2018) and further shown in the simulation of
Appendix 4.5, this is not ideal and should likely explain at least parts of the coverage
performance.

2.3 Learning Algorithms

With respect to the weights for each screening-learner pair described in Appendix 4.2, two
interesting patterns can be observed. First, models that focus on estimating the coun-
terfactual outcome benefit from the full range of the provided learning algorithms. Here,
the algorithms with the three highest weights are (in descending order) generalized addi-
tive models after screening with the elastic net, the CART algorithm after screening with
Cramer’s V, and multivariate adaptive regression splines after screening with the elastic
net. Second, the final super learner for the estimating the treatment mechanisms relied
exclusively on the CART algorithm (after screening with Cramer’s V), giving all other
algorithms a weight of 0.

3. Discussion

We have shown how to estimate ATT’s using doubly robust effect estimation of marginal
structural models, with integration of machine learning algorithms.
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Our proposed approach has the advantage that it can be implemented easily with ex-
isting software and confidence intervals can be calculated quickly using the Delta method.
However, as shown by the results of the data challenge and known from the literature, accu-
rate interval estimation remains a major challenge in causal inference – in particular in the
context of positivity violations (Li et al., 2022, Schomaker et al., 2019). It remains therefore
important to evaluate and improve existing approaches to confidence intervals estimation
for causal effect estimation (Tran et al., 2018).

We believe that the provided code boxes, the detailed appendix and accompanying
GitHub repository make it easy to adopt our suggested approach and evaluate its perfor-
mance further, beyond the specific estimands of the inspiring data challenge of the 2022
American Causal Inference Conference.

Acknowledgments
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4. Appendix A.

All our code is available at the GitHub repository https://github.com/PFMB/causalchall.

4.1 Setup of Data Set

We transformed the data from long to wide format. X-variables are fixed baseline variables,
whereas V-variables are time-varying X-variables (average patient related information per
practice). Note that we have log-transformed those covariates and added additional noise
variables for reasons explained in Section 1.4. Our time ordering is At → Xt → Yt because
each practice joins the program/intervention (or not) at the beginning of a year. We omit
A0 and A1 as they are zero for everyone by definition. We included Z at the start of the
data set, but any order before the first intervention node (A3) would have been appropriate
from an estimation perspective. Below is the data relating to the first data set of the data
challenge.

Z X1 X2 X3 X4 X5 X6 X7 X8 X9 n.patients.1 V1_avg.1

1: 1 0 A 1 A 1 20.774 14.153 0.161 43.432 113 10.808

2: 1 0 A 0 C 0 33.566 3.285 0.557 12.722 264 11.981

3: 0 0 C 1 A 1 57.283 11.178 0.257 -7.353 1309 10.950

V2_avg.1 V3_avg.1 V4_avg.1 V5_A_avg.1 V5_B_avg.1 V5_C_avg.1 Y.1

1: 2.920 0.540 0.298 0.690 0.274 0.035 1018.8815

2: 2.947 0.530 -0.116 0.716 0.159 0.125 827.5277

3: 3.045 0.588 0.341 0.592 0.312 0.095 1070.8444

n.patients.2 V1_avg.2 V2_avg.2 V3_avg.2 V4_avg.2 V5_A_avg.2 V5_B_avg.2

1: 109 10.768 2.872 0.532 0.274 0.706 0.266

2: 257 11.988 2.899 0.525 -0.113 0.732 0.144

3: 1342 11.034 3.061 0.581 0.302 0.576 0.325
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V5_C_avg.2 Y.2 A.3 n.patients.3 V1_avg.3 V2_avg.3 V3_avg.

1: 0.028 1607.1359 1 3181 3.094355 1.849242 0.6333972

2: 0.125 1021.4574 1 371 3.141995 1.847825 0.6119371

3: 0.099 1153.4875 0 1412 3.103510 1.880076 0.6549260

V4_avg.3 V5_A_avg.3 V5_B_avg.3 V5_C_avg.3 Y.3 A.4 n.patients.4

1: 0.8804563 0.7124595 0.2255407 0.04018179 1245.213 1 197

2: 0.7347689 0.7104958 0.1680536 0.10975086 1123.487 1 368

3: 0.9001613 0.6413274 0.2911760 0.09349034 1298.211 0 1450

V1_avg.4 V2_avg.4 V3_avg.4 V4_avg.4 V5_A_avg.4 V5_B_avg.4 V5_C_avg.4

1: 3.095578 1.842611 0.6450068 0.8232979 0.6941467 0.2484214 0.04114194

2: 3.160017 1.871648 0.6157260 0.6621724 0.7119689 0.1604167 0.10705907

3: 3.118923 1.896420 0.6544064 0.8394097 0.6402737 0.2844268 0.09531018

L1_4 L2_4 L3_4 Y.4

1: 1.218347 1.404687 1.6842086 1684.8206

2: 1.433104 1.308355 1.6799247 997.6451

3: 1.154495 1.034503 1.2185981 1399.9469

4.2 Variable Screening and Machine Learning Algorithms

For variable screening, we used i) the LASSO with tuning parameter selection based on min-
imizing a generalized cross-validation criterion, ii) the elastic net (Zou and Hastie, 2005;
Friedman et al., 2010) with tuning parameter selection based on the requirement to screen a
fixed amount of variables (i.e., 8), iii) the random forest (Breiman, 2001; Liaw and Wiener,
2002), Cramer’s V (highest association with the outcome; 4 variables selected), iv) the
Pearson correlation coefficient and v) no screening. All screening algorithms could handle
categorical and continuous variables simultaneously. As learning algorithms we used gen-
eralized linear models (both with main terms only and including all two-way interactions),
Bayesian generalized linear models with an independent Gaussian prior distribution for
the coefficients (Gelman and Su, 2021), classification and regression trees (Breiman et al.,
1984; Therneau and Atkinson, 2019), multivariate adaptive (polynomial) regression splines
(Friedman, 1991; Milborrow, 2021), generalized additive models (Hastie and Tibshirani,
1990; Hastie, 2020), Breimans’ random forest, gradient boosting machines (Friedman, 2001;
Chen et al., 2022), the arithmetic mean of the outcome/treatment and single-hidden-layer
neural networks (Venables and Ripley, 2002). We further considered a multi-layer percep-
tron (MLP) with one to three hidden layers, regularization and normalization (Allaire and
Tang, 2022) in the early stages of the analysis; however, the trade-off between predictive
performance and the computational feasibility suggested dropping this algorithm in the final
analysis. The two sets (i.e., the screening and learning algorithms) were combined based on
both computational and contextual considerations (see GitHub repository and Baumann
et al. (2021) for details). Each screening-learning pair served as a candidate for the super
learner (Van der Laan et al., 2007).
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4.3 Function to Generically Calculate Standard Errors with the Delta Method

1 msm.se <- function(msmobj ,b1=NULL ,b2=NULL ,cov="IC"){

2

3 if(is.null(attr(msmobj$transformOutcome ,"Yrange"))==FALSE){
4 a<-attr(msmobj$transformOutcome ,"Yrange")[1]
5 b<-attr(msmobj$transformOutcome ,"Yrange")[2]
6 }else{{a<-0; b<-1}}

7 ab <- b-a

8

9 if(is.null(b1)){stop("provide vector for b1")}

10 if(is.null(b2)){ind <- 0}else{ind <- 1}

11

12 comb1 <- paste(paste0(b1 ,"*x" ,1:length(b1)),collapse="+")

13 if(is.null(b2)==FALSE){comb2 <- paste(paste0(b2,"*x" ,1:length(b2)),collapse=

"+")}else{comb2 <- 0}

14

15 quasibinform <- sprintf(paste0("~ ((exp(",comb1 ,"))/(1+ exp(",comb1 ,")))* %f

- %f *((exp(",comb2 ,

16 "))/(1+exp(",comb2 ,")))* %f"), ab , ind , ab)

17

18 if(cov=="IC"){covm <- cov(ltmle ::: GetSummaryLtmleMSMInfo(msmobj ,estimator="

tmle")$IC)}else{covm <- msmobj$variance.estimate}
19

20 se <- msm:: deltamethod(as.formula(quasibinform),msmobj$beta , covm);se

21 }

4.4 Estimating the ATT through ltmle directly

1 m_1_0 <- ltmle(dwide ,

2 Anodes=c("A.3","A.4"),

3 Lnodes=c("n.patients .3", "V1_avg.3", "V2_avg.3",

4 "V3_avg.3", "V4_avg.3", "V5_A_avg.3", "V5_B_avg.3",

5 "V5_C_avg.3", "n.patients .4", "V1_avg.4", "V2_avg.4",

6 "V3_avg.4", "V4_avg.4", "V5_A_avg.4", "V5_B_avg.4",

7 "V5_C_avg.4"),

8 Ynodes=c("Y.3","Y.4"), survivalOutcome=F,

9 SL.library=ll, variance.method="tmle"

10 abar = c(0,0)

11 )

12

13 # Estimating E(Y^(0,0)|Z=1)

14 (mean(m_1_0$Qstar[dwide$Z == 1]))*(b-a)+a
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4.5 Simulation

1 # Note: the below code needs the function msm.se(), defined above

2 library(msm) # for delta method (used in msm.se())

3 library(ltmle)

4

5 GenerateData <- function(n, abar = NULL) {

6 W <- rnorm(n)

7 A <- rexpit(W)

8 if (is.null(abar)) {

9 Y <- rexpit(W + A)

10 } else {

11 Y <- rexpit(W + abar)

12 }

13

14 if (is.null(abar)) {

15 # observed data

16 return(data.frame(W, A, Y))

17 } else {

18 # counterfactual mean

19 return(mean(Y[A == 1])) #among treated

20 # return(mean(Y)) #among all

21 }

22 }

23

24 rexpit <- ltmle ::: rexpit

25 invlogit <- function (x) { 1/(1 + exp(-x))}

26 psi0 <- GenerateData (1e6, abar = 1)

27 print(psi0) # true ATT

28

29 # setup for ltmleMSM

30 regimesList <- list(function(row) c(1),

31 function(row) c(0))

32

33 my.sum.measures <- array(c(c(1,0),c(1,1))

34 ,dim=c(2,2,1),dimnames=list(NULL ,c("Int","time"),

NULL))

35

36 niter <- 10000 # number of simulation runs

37 n <- 1000 # sample size

38 est <- rep(NA_real_, niter); est2 <- rep(NA_real_, niter)

39 coverage <- coverage2 <- matrix(NA,nrow=niter ,ncol =2)

40

41 for (i in 1: niter) {

42 dt <- GenerateData(n)

43 r <- ltmle(dt, Anodes = "A", Ynodes = "Y", estimate.time = F, abar = 1)

44 est[i] <- mean(r$Qstar[dt$A == 1]) # point estimate through ltmle

45 # data for ltmleMSM: add trt A additionally as ‘baseline indicator Z’

46 dt2 <- dt; dt2$Z <- dt$A; dt2 <- dt2[,c("Z","W","A","Y")]

47 r2 <- ltmleMSM(dt2 , Anodes = "A", Ynodes = "Y",

48 final.Ynodes=c("Y"),

49 Qform = c(Y="Q.kplus1 ~ W + A"), gform = "A ~ W",

50 regimes=regimesList ,

51 working.msm="Y ~ Int * Z", # ‘Int ’ -> see summary measures

52 summary.measures=my.sum.measures ,
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53 variance.method="tmle"

54 )

55 est2[i] <- invlogit(c(1,1,1,1)%*%r2$beta) # point estimate with ltmleMSM

56 # coverage; 90% CI as in data challenge

57 se1 <- msm.se(r2 ,b1=c(1,1,1,1),b2=NULL , cov="IC")

58 se2 <- msm.se(r2 ,b1=c(1,1,1,1),b2=NULL , cov="not IC")

59 coverage[i,1] <- est2[i] - ((qnorm (0.95)*se1/sqrt(n) ))

60 coverage[i,2] <- est2[i] + ((qnorm (0.95)*se1/sqrt(n) ))

61 coverage2[i,1] <- est2[i] - (( qnorm (0.95)*se2/sqrt(n) ))

62 coverage2[i,2] <- est2[i] + (( qnorm (0.95)*se2/sqrt(n) ))

63 #

64 }

65

66 # give ltmle() and ltmleMSM () same results? -> YES

67 round(summary(est -est2),digits =8)

68 # Min. 1st Qu. Median Mean 3rd Qu. Max.

69 # 0 0 0 0 0 0

70

71 # approximately unbiased? -> YES

72 mean(psi0 -est)

73 mean(psi0 -est2)

74 # 0.0003247021

75 # 0.0003247022

76

77 # coverage -> conservative; here , better non -IC based

78 mean(as.numeric(coverage [,1] <= psi0 & psi0 <= coverage [,2]))

79 mean(as.numeric(coverage2 [,1] <= psi0 & psi0 <= coverage2 [,2]))

80 # [1] 0.9996 # coverage IC based

81 # [1] 0.9673 # coverage tmle based
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