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Motivating Question (I)

I Antiretroviral treatment (ART) is known to be highly effective

I Treatment initiation is still often delayed
(former guidelines; concerns about toxicities, non-adherence,
drug resistance; logistical challenges; cost considerations)

I There is limited knowledge about the optimal timing of
antiretroviral treatment initiation in children and adolescents

I It is no longer ethically possible to conduct a trial

I Regular update of treatment guidelines by WHO
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Motivating Question (II)

Of interest: the effect of different treatment initiation rules on mortality
and growth

Time-dependent confounding affected by prior treatment:

Source: Daniel et al. [1]
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Notation

I Follow-up time: t = 0,1, . . . ,T months

I Outcome: Yt = HAZ (height-for-age z-score)

I Intervention: At = antiretroviral therapy (ART)

I Confounders:

I Time-Varying: Lt = CD4 count, CD4%, WAZ (=WHO stage)

I Baseline: L0 = CD4 count, CD4%, WAZ, HAZ, sex,
age, year, region

I Censoring: Ct

I Survival: St = Death

I History: e.g. Āt = (A0, . . . ,At )

I Counterfactual: e.g. Y āt
t

I Intervention rule: e.g. dt (L̄t ) [assigns At as a function of L̄t ]
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Target Quantity

ψT = E(Y d̄
T )

i.e. the expected value of Y at time T under an intervention rule
d̄ which assigns At as a function of L̄t and sets Ct and St deter-
ministically to 1.

→ In the example, we consider

ψ30 = E(Y d̄ j
30

30 )

i.e. the mean HAZ at 30 months, under no censoring, for a given
treatment rule d̄ j to be the quantity of interest
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Interventions (Static and Dynamic)

With L1 = CD4 count and L2 = CD4% we evaluate:

d̄1
t = {ct = 1; st = 1; at = 1 for ∀t

d̄2
t (L1

t ,L2
t ) =

 ct = 1; st = 1; at = 1 if L1d̄
t < 750 or L2d̄

t < 25%
or at−1 = 1

ct = 1; st = 1; at = 0 otherwise

d̄3
t (L1

t ,L2
t ) =

 ct = 1; st = 1; at = 1 if L1d̄
t < 350 or L2d̄

t < 15%
or at−1 = 1

ct = 1; st = 1; at = 0 otherwise

d̄4
t = {ct = 1; st = 1; at = 0 for ∀t
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Data Example: Comparison of 3 Estimators

Estimate ψ30 = E(Y d̄ j
30

30 ) for different interventions:

(i) g-formula, manual implementation which includes prior clinical
knowledge using additive regression models

(ii) LTMLE, manual implementation which includes prior clinical prior
knowledge using additive regression models

(iii) LTMLE, “automated” (using ltmle), using a data-adaptive
approach (super learning with 6 “simple learners”, computational
constraints)

“Prior clinical knowledge”: children who are sicker at presentation will
have a different disease trajectory from patients who are healthier at
presentation (non-linear interactions)
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Methodological Motivation for Comparison

I doubly robust estimators rarely applied under long follow-up,
gradually declining sample size, dynamic interventions, and
multiple time-dependent confounders

I no detailed comparison for complex longitudinal data between
(parametric) g-formula and LTMLE yet

Also: simulations for different LTMLE estimation approaches under
realistic, challenging settings (as above) may be informative
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Estimator I: LTMLE

Using the iterative conditional expectation rule and the assumptions
of positivity, consistency and sequential conditional exchangability1,
one can show2 that
(for Lt → Yt → At → Ct → St , Yt ∈ Lt for t < T and At = {At ,Ct ,St})

E(Y d̄
T ) =

E(E( . . .E(E(YT |ĀT−1 = d̄T−1, L̄T )|ĀT−2 = d̄T−2, L̄T−1 ) . . . |Ā0 =
d0,L0 )|L0 ) .

The LTMLE estimator (van der Laan and Gruber, IJB, 2012 [3]) is
based on the above equality.

A targeted step for each t enables doubly robust inference with
respect to ψT , the quantity of interest.

1let’s assume the assumptions are met for now
2Bang and Robins, Biometrics, 2005 [2]
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Algorithm (I)

For t = T , ...,1:

1. Use an appropriate regression model to estimate E(Yt |Āt−1, L̄t ).
The model is fitted on all subjects that are uncensored and alive
(until t − 1).

Note that the outcome refers to the measured outcome for t = T
and to the prediction (of the conditional outcome) from step 3d
(of iteration t − 1) if t < T .

2. Now, plug in Āt−1 = d̄t−1 based on rule d̄ and use the regression
model from step 1 to predict the outcome at time t , i.e. Ỹ d̄

t .



11/24

Algorithm (II)

3. To improve inference with respect to ψt update the initial estimate
of step 2:

a) the outcome refers again to the measured outcome for t = T and
to the prediction from item 3d (of iteration t − 1) if t < T .

b) the offset is the original predicted outcome from step 2 (iteration t).

c) the estimated “clever covariate” refers to the cumulative product of
inverse treatment and censoring probabilities:

Ĥ(Ā, C̄, L̄)t−1 =
t−1∏
s=0

I(Ās = d̄s)× I(C̄s = 1)

P̂(As = d̄s|L̄s = l̄s, Ās−1 = d̄s−1, C̄s−1 = 1)

× P̂(Cs = 1|L̄s = l̄s, Ās−1 = d̄s−1, C̄s−1 = 1)

d) Predict the (updated) outcome, Ỹ d̄
t , based on the model defined

through 3a, 3b, and 3c.
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Algorithm (III)

For t = 1:

4. The estimate ψ̂T is obtained by calculating the mean of the
predicted outcome from step 3d (where t = 1).

5. Confidence intervals can, for example, be obtained using the
vector of the estimated influence curve of ψT , which can be
written as

ÎC(ψT ) =

{
T∑

s=1

Ĥ(Ā, C̄, L̄)s−1

[
Ỹ d̄

s − Ỹ d̄
s−1

]}
+ Ỹ d̄

1 − ψ̂T ,TMLE

An asymptotically normal 95% confidence interval is then given
by [

ψ̂TMLE ± 1.959964
√

V̂ar(ÎC)/n
]
.
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Estimator II: the g-formula3 (only brief idea)

Here, with Āt = {Āt , C̄t , S̄t}, Lt → Yt → At → Ct → St , Yt ∈ Lt
(t < T ), we can write

ψT = E(Y d̄
T ) =

∫
l̄∈L̄t


E(YT |ĀT−1 = d̄T−1, L̄T = l̄T )×

T∏
t=1

f (lt |Āt−1 = d̄t−1, L̄t−1 = l̄t−1)

 d l̄

with

q∏
s=1

f (lst |Āt−1 = d̄t−1, L̄t−1 = l̄t−1,L1
t = l1t , . . . ,L

s−1
t = ls−1

t ) .

→ Integral can be approximated by simulation; one requires models
for all time-varying confounders Ls

t and the outcome Yt , for
t = 1, . . . ,T .

3based on Robins (1986) [4]
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Results Data Analysis (Intervention 2)
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Results Data Analysis (Intervention 4)
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Which results should we trust?
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Simulation

I There is simulation evidence that LTMLE with data-adaptive
approaches performs well

I However, hardly any longitudinal settings have been evaluated;
finite sample performance under multiple challenges (small
sample, limited set of learners, non-linearities) unexplored

I Here: simulation with 12 time points, interactions and non-linear
relationships for

I different sample sizes; n ∈ {200, 600, 1000}

I different truncation levels; g ∈ {0.01, 0.025, 0.04}

I different learner sets

I different interventions
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Results Simulation
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Positivity (I)

Are there problems with specific interventions? Not enough to look at
crude support...

Positivity:

P(At = d̄t |L̄t = l̄t , Āt−1 = d̄t−1) > 0 for ∀t , d̄t , l̄t
with P(L̄t = l̄t , Āt−1 = d̄t−1) 6= 0

Proposal: Estimate P(At = d̄t |L̄t = l̄t , Āt−1 = d̄t−1) to measure the
relevant data support! (easy in simulation)

Proportion of cumulative probabilities < 0.025:

Intervention d̄1
30 d̄2

30 d̄3
30 d̄4

30
simulation 0.3% 1.0% 0.6% 1.5%
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Positivity (II) / model specification in data analysis

manual or automated LTMLE?

Proposal: calculate proportion of cumulative probabilities < 1%
contained in the clever covariate for different model specifications.

%truncated
Intervention N SL GAM GLM
d̄1

30 immediate ART 371 0 15.6 0
d̄2

30 750/25% 396 0.3 18.2 11.6
d̄3

30 350/15% 505 0 32.9 45.9
d̄4

30 no ART 292 0.7 68.5 100

→ Simulation: different interventions can have different “data support”
→ Diagnostics: limited data support for some interventions
→ Data Analysis: caution w.r.t. interpretation of intervention 4
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Conclusions

I It is feasible to implement LTMLE in complex settings with long
follow-up times, small sample size, multiple time-dependent
confounders, and dynamic interventions
(first implementation with > 9 follow-up time points, dynamic
interventions and multiple time-dependent confounders)

I In our setting, there’s no evidence that the g-formula using
flexible additive models, informed by prior clinical knowledge,
may perform better than an automated LTMLE procedure

I Different interventions may have different support in the data;
diagnostics to detect positivity violations, as suggested, are
important
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Appendix: DAG for Data Analysis


